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Rapid Progress of ML Systems

Training becomes faster

Training becomes more automatic/systematic

Cerebro

ZeroER

ModelDB NorthStar …



Rapid Progress of ML Systems

Training becomes faster

Training becomes more automatic/systematic

Cerebro

ZeroER

ModelDB NorthStar …
Centralized Asynchronous Decentralized

Lossless Sparsification Quantization

+ Co-design algorithms, systems and hardware 
accelerators (FPGAs) to enable deep integration of ML 

into DB, Spark, Serverless, MPI



Rapid Progress of ML Systems

http://zip.ml
Distributed ML in DB/Serverless/Spark/MPI? Check out

http://ease.ml
MLOps & MLDev made easy? Check out

Training becomes faster

Training becomes more automatic/systematic

Cerebro

ZeroER

ModelDB NorthStar …

+ streamline and manage the end-to-end process of 
MLDev and MLOps: feasibility study, CI/CD, active 
model selection and adaptation, data debugging…



While getting some ML models has 
never been easier, our ability to 
understand the training process has not 
been improving with the same pace.



Understanding has never been more important

ML today is now a Data Problem

• Given the raw features from Kaggle, most AutoML
platforms rank in the bottom 50%.

• It is the data that we need to improve, and knowledge 
that we need to integrate, to build better ML 
applications.

• To improve data, we need to first understand them.

MLBench

VLDB (2018)
http://www.vldb.o
rg/pvldb/vol11/p12
20-liu.pdf

Updated version 
(2021):
https://arxiv.org/a
bs/1707.09562

http://www.vldb.org/pvldb/vol11/p1220-liu.pdf
https://arxiv.org/abs/1707.09562


Two Examples of Understanding

ML Training
𝒜(D)

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Q1. Which data problem should I fix first to improve my 
accuracy/fairness/robustness?

Q2. Which training example is to blame or is most important for my 
accuracy/fairness/robustness?



Two Examples of Understanding

ML Training
𝒜(D)

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Q1. Which data problem should I fix first to improve my 
accuracy/fairness/robustness?

Q2. Which training example is to blame or is most important for my 
accuracy/fairness/robustness?

Understanding these two questions has 
a profound impact on ML DevOps.

• Data cleaning for ML
• Data debugging for ML
• Data acquisition for ML
• Data valuation for ML



Two Examples of Understanding

ML Training
𝒜(D)

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Q1. Which data problem should I fix first to improve my 
accuracy/fairness/robustness?

Q2. Which training example is to blame or is most important for my 
accuracy/fairness/robustness?

Understanding these two questions has 
a profound impact on the ML DevOps.

ActiveClean
BoostClean

AlphaClean

Influence Func.

Data Shapley

…

…



So, what’s the problem?



Two Examples of Understanding

ML Training
𝒜(D)

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Real-world ML applications 
don’t often look like this

ML Training
𝒜(𝑞(𝐷))

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Feature 
Extraction 
Pipelines
𝑞(𝐷)

They look something like this

These data transformations really make things hard!

If the DB community don’t fix this, who else are going to deal with data transformations?



Our Goal

ML Training
𝒜(𝑞(𝐷))

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Feature 
Extraction 
Pipelines
𝑞(𝐷)

Q1. Which data problem should I fix first to improve my 
accuracy/fairness/robustness?

Q2. Which training example is to blame or is most important for my 
accuracy/fairness/robustness?

Entropy & 
Expectation

Shapley Value & Expected 
Marginal Improvement



Our Approach

ML Training
𝒜(𝑞(𝐷))

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Feature 
Extraction 
Pipelines
𝑞(𝐷)

Codd’s Table

Positive 
Relational 

Algebra Query
𝑞′(𝐷)

KNN Classifier
𝒜′(𝑞′(𝐷))

Measure

Accuracy
Fairness

Robustness

Heuristics 1 Heuristics 2 Heuristics 3Use as a proxy



Takeaways

Codd’s Table

Positive 
Relational 

Algebra Query
𝑞′(𝐷)

KNN Classifier
𝒜′(𝑞′(𝐷))

Measure

Accuracy
Fairness

Robustness

Takeaway 1
For a dominating number 
of realistic pipelines, for 
their proxy pipeline, we 
can compute exactly the 

Entropy, Expected 
Prediction, and Shapley 

Value, in PTIME.

Takeaway 2
These fundemental quantities, i.e., 

Entropy, Expected Prediction, 
Shapley Value, provide principled 

frameworks for many applications: 
Data cleaning, debugging, 

valuation for ML, Defense against 
backdoor adversarial attacks

Takeaway 3
Use these proxy pipelines 
as a proxy work well in 

many scenarios.

I will also show you cases 
when they don’t.



§ Theoretical Result
• Entropy/Expectation of ML Training over Incomplete 

Information and Uncertainty
• Shapley value of ML Training over Feature Extraction 

Pipelines
§ Applications
• Data Cleaning for ML
• Defense against backdoor adversarial attacks
• Data Debugging for ML
• Data Market for ML

§ Heuristics of Approximating Real-world Pipelines
§ Failure Cases & “Call for Help”

Overview



Entropy: Setting

𝑛

𝑅

𝑑

Uncertainty on features

ML Model
Training Measure

Accuracy

Q1. What’s the impact of dirty data to the 
final ML accuracy? (not all noise matters)

What does this really mean?



Unknowns (Incomplete information) in DB

§ What is Unknown in DB?
§ How does DB answer queries under Unknowns?
§ ... the nightmare of many undergrads in DB class...

pid name age

1 John 32

2 Anna 29

3 Kevin

4 30

NULL

NULL

SELECT * 
FROM Person
WHERE age < 30;

pid name age

2 Anna 29

Unknown

Train ML MODEL ????



Unknowns (Incomplete information) in DB

§ What is NULL?
Ø Sure/Certain Answer

pid name age

1 John 32
2 Anna 29
3 Kevin NULL

pid name age

1 John 32
2 Anna 29
3 Kevin 1

pid name age

1 John 32
2 Anna 29
3 Kevin 2

pid name age

1 John 32
2 Anna 29
3 Kevin 30

Codd Table Possible Worlds

...

SELECT * 
FROM Person
WHERE age < 30;

SELECT * 
FROM Person
WHERE age < 30;

SELECT * 
FROM Person
WHERE age < 30;

pid name age

2 Anna 29
3 Kevin 1

pid name age

2 Anna 29
3 Kevin 2

pid name age

2 Anna 29

SELECT * 
FROM Person
WHERE age < 30;

pid name age

2 Anna 29
“Sure 

answer”

If you take this view, 
there is nothing stop 
us from applying the 
same semantics to ML



ML over Unknowns: Certain Prediction (CP)

pid name age

1 John 32
2 Anna 29
3 Kevin {1,2,30}

pid name age

1 John 32
2 Anna 29
3 Kevin 1

pid name age

1 John 32
2 Anna 29
3 Kevin 2

pid name age

1 John 32
2 Anna 29
3 Kevin 30

Relation with NULL Possible Worlds without NULL

1. Train ML model
2. Predict on a 

new tuple t

1. Train ML model
2. Predict on a 

new tuple t

1. Train ML model
2. Predict on a 

new tuple t

1. Train ML model
2. Predict on a 

new tuple t

YES YES YES“Sure 
answer”YES

NO NO NO“Sure 
answer”NO

YES NO NO“Sure 
answer”NULL

YES NO NOExpectation33% Yes

YES NO NOEntropy0.915



ML over Unknowns: Certain Prediction (CP)

𝑅! 𝑅" 𝑅# 𝑅$

𝑅

…

• Given an input relation 𝑅 with a known noise model …

• … it defines a probability distribution over many possible 
worlds {𝑅!… 𝑅"}

• Given a test example 𝑥, the expected prediction on 𝑥 is
𝐶𝑃(𝑥) = 𝔼𝒜 𝑅 𝑥

where 𝒜 𝑅 is a classifier trained on one possible 𝑅.

• The entropy is:
𝐻 𝒜 𝑅 𝑥

• Intuition of why this is useful:
• Why Entropy goes to 0, noises in training set do not 

matter at all. (It won’t change the result)
• If we take this view, data cleaning for ML 

becomes the process of minimizing Entropy.

𝑇𝑟𝑎𝑖𝑛( )

𝑃𝑟𝑒𝑑𝑖𝑐𝑡( )



𝑛

𝑑

Challenge and Result

𝑅! 𝑅" 𝑅# 𝑅$𝑅

𝑇𝑟𝑎𝑖𝑛( )

𝑡

𝑃𝑟𝑒𝑑𝑖𝑐𝑡( )

2,-
possible 
worlds

Challenges

1. General Classifier
• #P-Hard
• Approximation with MCMC

2. K-Nearest Neighbor Classifier
• 𝑂(𝑛𝑑) – Linear in # Unknowns to 

explore 𝑂 2%& many worlds! 
• http://vldb.org/pvldb/vol14/p255-

karlas.pdf Trust me J
• Also apply to pipelines with only map 

operators

Results

http://vldb.org/pvldb/vol14/p255-karlas.pdf


Shapley Value: Setting

ML Training
𝒜(𝑞(𝑅))

ML
Model

Measure

Accuracy
Fairness

Robustness

Feature 
Extraction 
Pipelines
𝑞(𝑅)

𝑅

Q2. What’s the importance of each training example to the final ML 
accuracy? (not all input example matters)



Expected Marginal Improvements

𝑅 Importance of Red tuple?

Empty

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

Acc(             )

-

-

-

-

-

-

-

-

= Improvement 1

= Improvement 2

= Improvement 3

= Improvement 4

= Improvement 5

= Improvement 6

= Improvement 7

= Improvement 8

Agg

Answer

𝑣 𝑡 =
1
𝑛!

'
!! ⊆!\{%}

|𝑅|
|𝑅'|

𝑈 𝑅' +𝑡 −𝑈 𝑅'

Shapley Value

• Sound game-theoretical foundation
• Many good properties
• Has been shown to work well for 

data debugging (w/o feature 
extraction pipelines)



Challenge

𝑅! = ∅ 𝑅" 𝑅# 𝑅$𝑅

𝑛

2,
possible 
worlds

ML 
Training
𝒜(𝑞(𝑅))

ML
Model

Feature 
Extraction 
Pipelines
𝑞(𝑅)

1. General Classifier
• #P-Hard
• Approximation with MCMC

2. K-Nearest Neighbor Classifier

• https://ds3lab.inf.ethz.ch/datascope.
html Trust me J

Results

Pipeline Type 1NN KNN

map 𝑂(𝑁 log𝑁) 𝑂(𝑁()

map + fork 𝑂(𝑁 log𝑁) 𝑂(𝑁(𝑀()

1-to-many joins 𝑂(𝑁)) 𝑂(𝑁))

Polymonial with PTIME 
counting oracle

PTIME PTIME

https://ds3lab.inf.ethz.ch/datascope.html


Goal: Illustrate how locality of KNN 
can help. Similar ideas apply to 
both Entropy and Shapley Value.



Data Valuation

𝑅! = ∅ 𝑅" 𝑅# 𝑅$𝑅

𝑡

Goal: 𝑣 𝑡 = !
%!
∑(

%
|*!|

× 𝑈 𝑅( ∪ 𝑡 − 𝑈(𝑅()

𝑛

− 𝑈( )𝑈( )

Simplified Version (For Presentation)

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅, s.y is the label of s
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛! A

*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(

All can be generalized; but it makes the 
analysis more engaged so let’s only talk 
about these simplified assumptions J



𝑠 ∉ 𝑅,

Validation 
Example

Training 
Relation
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𝑡 ∉ 𝑅,

Target 
Example

Data Valuation: 1. A Trivial 𝐎( 𝒏
𝑲 + 𝒏 𝐥𝐨𝐠𝒏) Algorithm

Simplified Version (For Presentation)

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛!

A
*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(



𝑠 ∉ 𝑅,

Validation 
Example

Training 
Relation

For 𝐾-NN 
classifier, there is 
only |*|

- possible 
choices of top 𝐾.

𝑡 ∉ 𝑅,
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Data Valuation: 1. A Trivial 𝐎( 𝒏
𝑲 + 𝒏 𝐥𝐨𝐠𝒏) Algorithm

Simplified Version (For Presentation)

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛!

A
*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(



Data Valuation: 1. A Trivial 𝐎( 𝒏
𝑲 + 𝒏 𝐥𝐨𝐠𝒏) Algorithm

𝑠 ∉ 𝑅,

Validation 
Example

Training 
Relation

𝑡 ∉ 𝑅,

For 𝐾-NN 
classifier, there is 
only |*|

- possible 
choices of top 𝐾.

Top-1

Top-2

Top-3

Whether these examples in possible world 
does not matter – They won’t be Top-3: 
We can simply calculate # worlds.

With 𝑡 added into 𝑅, this tuple 
will be out of Top-3, Top-
1/Top-2 will still be in Top-3

=> For each of |#|
$ possible top-K’s, 

one only needs to compare the label 
of 𝑡 and the label of the last in top-K.

Can we do better?

Le
ss

 S
im

ila
r t

o 
va

lid
at

io
n 

Ex
am

pl
e

Simplified Version (For Presentation)

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛!

A
*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(

(Yes, this trivial algorithm does not use 
all the properties that KNN has)



Data Valuation: 2. An 𝐎 𝒏 𝐥𝐨𝐠 𝒏 Algorithm for 𝑲 = 𝟏

𝑠 ∉ 𝑅,

Validation 
Example

Training 
Relation
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Simplified Version (For Presentation)

𝑣 𝑡% ∝ 𝑈 𝑡 − 𝑈(∅)

given 𝑣 𝑡(

𝑣 𝑡(.! ?

• If 𝑡(.!. 𝑦 = 𝑡( . 𝑦:
• 𝑣 𝑡(.! = 𝑣(𝑡()

• Else If 𝑡(.!. 𝑦 = 𝑠. 𝑦 ≠ 𝑡( . 𝑦:
• Count # worlds 𝑡( is top-1

• Else if 𝑡( . 𝑦 = 𝑠. 𝑦 ≠ 𝑡(.!. 𝑦:
• Count # worlds 𝑡( is top-1

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛!

A
*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(



Data Valuation: 3. An 𝐎 𝒏 𝐥𝐨𝐠 𝒏 Algorithm

Simplified Version (For Presentation)

𝑠 ∉ 𝑅,

Validation 
Example

Training 
Relation
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𝑣 𝑡J =
𝕀 𝑡J. 𝑦 = 𝑠. 𝑦

𝑛

𝑣 𝑡K = 𝑣 𝑡KLM +
𝕀 O#.PQR.P S𝕀[O#$%.PQR.P]

V
WXY{V,K}

K

(1) Sort; 
(2) Single Pass Scan

(Challenge: how to efficiently, 
incrementally maintain one  

combinatorial  term.

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛!

A
*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(



A single pass of sorting is still too 
slow for systems (we have could 
have billions data points to sort)



Data Valuation: 𝜺, 𝜹 -Approximation with LSH

Simplified Version (For Presentation)

𝑠 ∉ 𝑅,

Validation 
Example

Training 
Relation

Query

Top-M

High-
dimensional 
Index in DB

If we set 𝑣 𝑡#$! = 0, we 
get !

#
, 0 -approximation.

All we need is to query an 
index with probability 1 −
𝛿 returns exact top-M.

Different from most DB 
index, but it exists.

Subliner under certain conditions 
(a function of relative contrast)

• Input: 
• Training Relation 𝑅, 𝑅 = 𝑛
• Target Training Example 𝑡 ∉ 𝑅
• Validation Example 𝑠 ∉ 𝑅
• Classification task
• Utility:

𝑈 𝑅 = 𝑟 ∈ 𝐾𝑁𝑁 𝑅, 𝑠 : 𝑟. 𝑦 = 𝑠. 𝑦 /𝐾

• Output: the value of 𝑡 over 𝑅

𝑣 𝑡 =
1
𝑛!

A
*! ⊆*"

|𝑅|
|𝑅(|

𝑈 𝑅( C𝑡 −𝑈 𝑅(



Enough Theory! 
How can we use these?



§ Theoretical Result
• Entropy/Expectation of ML Training over Incomplete 

Information and Uncertainty
• Shapley value of ML Training over Feature Extraction 

Pipelines
§ Applications
• Data Cleaning for ML
• Defense against backdoor adversarial attacks
• Data Debugging for ML
• Data Market

§ Heuristics of Approximating Real-world Pipelines
§ Failure Cases & “Call for Help”

Overview



Data Cleaning for ML

𝑛

𝑅

𝑑

Uncertainty on features.
Think about it as outputs of 
state-of-the-art data cleaning 
methods – each method 
output a candidate value.

ML Model

Cleaning oracle.
There exist a manual 
cleaning oracle to 
decide the ground truth 
value for each feature.

Accuracy

Idea: Clean examples that 
minimize the expected entropy.

Use the results of decades of 
research on Sequential 
Information Maximization for 
entropy minimization

More results in:
http://vldb.org/pvldb/vol14/p255
-karlas.pdf

How should we prioritize which cell to clean?

http://vldb.org/pvldb/vol14/p255-karlas.pdf


Data Cleaning for ML – Entropy Minimization

All Possible Worlds

Truth
(100% 
Clean)

Clean One 
Value

Clean One 
Value

…

Entropy = 0 =>
All remaining noises do not 
matter – All possible worlds 
have the same utility as the 

100% clean dataset

How to find cleaning opeations 
𝑜!…𝑜% such that we decrease final 
entropy as much as possible?

Under this view, Data 
Cleaning for ML becomes: Under mild technical conditions, 

we can greedily pick the next 
cleaning operations 𝑜(/! that 
decreases our expected entropy.

Lot of interesting studies 
(decades) about Sequential 
Information Maximization

Not consistent with 
the true value



Defend against backdoor adversarial attacks

Training Set

Dog

Cat

Cat

Cat

ML Model

Benign Test Example

Adv. Example

Dog

Cat

Idea: Inject Gaussian noise to the 
training set and compute the expection.

This allows us to provide certifications on 
robustness, similar how people are doing 
randomized smoothing for evasion 
attacks.

To our best knowledge, this gives us the first 
robustness certification for backdoor attacks 
https://arxiv.org/abs/2003.08904

Can we make our training process 
robust to this type of attacks?

https://arxiv.org/abs/2003.08904


Robustness of Expectations

Inspired by the seminal work of 
randmized smoothing, but 
significantly generalizes it.

Let’s look at 𝑔 𝑥 = 𝔼0∼𝒵𝑓(𝑥, 𝑧)

What can we say about 𝑔 𝑥 and 𝑔 𝑥 + 𝛿 ? 

Informal Theorem

If 𝑔 𝑥 ≥ 𝑝 and 𝑧 ∼ 𝑍 with 
probability density function 𝜇, then

𝑔 𝑥 + 𝛿

≥ ℙ*∼,
𝜇(𝛿 + 𝑧)
𝜇(𝑧)

≤ 𝑍-.(1 − 𝑝)

https://arxiv.org/abs/2003.08904

Application 1. Defend about Backdoor

𝑔 𝑥 = 𝔼0∼𝒵𝑓(𝑥, 𝑧)

Training Set
Injected Gaussian Noise

Training over a new training set 𝑥 + 𝑧, then do inference

Get a certificate looks like: As long as the attacker 
introduces a perturbations 𝛿 with 2-norm smaller 
than 𝐶, the inference result will not change by Δ.

When we have a KNN classifier, we can calculate 
this term exactly in PTIME.

When we have a Deep neural networks, sample 
some training sets, train a model for each.

https://arxiv.org/abs/2003.08904


Robustness of Expectations - Quantum Systems

https://www.nature.com
/articles/s41534-021-
00410-5

Inspired by the seminal work of 
randmized smoothing, but 
significantly generalizes it.

Let’s look at 𝑔 𝑥 = 𝔼0∼𝒵𝑓(𝑥, 𝑧)

What can we say about 𝑔 𝑥 and 𝑔 𝑥 + 𝛿 ? 

Application 2. Robustness of Quantum Systems

𝑔 𝑥 = 𝔼3𝑓(𝑥)

Input states, N qbits
Quantum Circuit

Get a certificate looks like: As long as the attacker 
introduces a perturbated state 𝜌 with 
fidelity(𝜌, 𝑥) > 𝐶, the result of this quantum system 
will not change by Δ.

We don’t need to inject noises as in the previous 
case. We get robustness “for free” because of the 
probabilistic semantics of quantum systems.

https://arxiv.org/abs/2003.08904

Informal Theorem

If 𝑔 𝑥 ≥ 𝑝 and 𝑧 ∼ 𝑍 with 
probability density function 𝜇, then

𝑔 𝑥 + 𝛿

≥ ℙ*∼,
𝜇(𝛿 + 𝑧)
𝜇(𝑧)

≤ 𝑍-.(1 − 𝑝)

https://www.nature.com/articles/s41534-021-00410-5
https://arxiv.org/abs/2003.08904


Robustness of Expectations – PDB & Joint Inference

Inspired by the seminal work of 
randmized smoothing, but 
significantly generalizes it.

Let’s look at 𝑔 𝑥 = 𝔼0∼𝒵𝑓(𝑥, 𝑧)

What can we say about 𝑔 𝑥 and 𝑔 𝑥 + 𝛿 ? 

Application 3. Robustness of PDB & Joint Inference

𝑔 𝑥 = 𝔼3𝑞(𝑥)

Output of NNs, or PDB
Probabilistic DB queries: e.g., SQL
Probabilistic Inference queries: MLN, CRF

Get a certificate looks like: As long as the attacker 
introduces a perturbations 𝛿 on 𝑥 with 2-norm 
smaller than 𝐶, the result of this quantum system 
will not change by Δ.

We don’t need to inject noises as in the previous 
case. We get robustness “for free” because of the 
probabilistic semantics of these probabilistic 
inference systems.https://arxiv.org/abs/2003.08904

Informal Theorem

If 𝑔 𝑥 ≥ 𝑝 and 𝑧 ∼ 𝑍 with 
probability density function 𝜇, then

𝑔 𝑥 + 𝛿

≥ ℙ*∼,
𝜇(𝛿 + 𝑧)
𝜇(𝑧)

≤ 𝑍-.(1 − 𝑝)

https://arxiv.org/abs/2106.06235
https://arxiv.org/abs/2003.00120

https://arxiv.org/abs/2003.08904
https://arxiv.org/abs/2106.06235
https://arxiv.org/abs/2003.00120


Robustness & data cleaning are all naturally 
connected to Entropy and Expectations. An 
efficient proxy for computing these could 
go a long way. 



Data Debugging

Training set with 
incorrect labels

Test set

Operators

ML Model

Accuracy

Dog

Dog

Cat

Idea: Data examples with incorrect labels 
should have a small (often negative) 
Shapley value.

O(N log N) if we use KNN and if a 
pipeline can be conditioned as map-fork. 
Orders of magnitude faster than MCMC: 
< 1 second for reasonable dataset.

How can we find out those training 
examples with wrong labels?
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Data Debugging

Training set with 
backdoor examples

Test set

Operators

ML Model

Accuracy

Dog

Dog

Fish

Idea: Data examples with backdoor 
labels should have a small (often negative) 
Shapley value.

O(N log N) if we use KNN and if a 
pipeline can be conditioned as map-fork. 
Orders of magnitude faster than MCMC: 
< 1 second for reasonable dataset.

How can we find out those training 
examples with backdoor patterns?

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 10
0R

ob
us

tn
es

s a
cc

ur
ac

y 
(%

)

Fraction of data corrected (%)

Random

KNN-Shapley
(cond)
TMC-Shapley

KNN-Shapley

TMC-Shapley
(cond)



Expected marginal improvement / Shapley 
value provides a principled framework for 
data debugging. An efficient proxy for 
computing these could go a long way. 



Data Market

Data Market
Trusted Storage

Trusted Computation

ML Model

$

How should we fairly distribute $ to 
each data contributor?

Idea: Use Shapley value (which is 
actually why we originally looked at this)

O(N log N) algorithm if we use KNN and 
if a pipeline can be conditioned as map-
fork.

https://kara.cloud

https://kara.cloud/
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Heuristics 1: Unknown Noise to Codd’s Table

?

Input Data without
Noise Model

Input Data with
Noise Model

1. Run a collection of SOTA automatic data cleaning tools
2. Use their cleaning result for each cell as a candidate value
3. Give them a uniform prior



Heuristics 2: ML Pipelines to Positive RA

• Dataflow using a diverse set of transformations, but 
different operators largely fall into two types:

• Many reduce functions are relatively stable with respect to 
the removal of data examples

• Heuristics: If we fix the reduce part to be over the whole 
dataset, conditioning on this, we can approximate a 
majority of pipelines.

Hash Logarithm Stopword 
Removal

String 
Tokenization

Projection

One-Hot 
Encoding

Normalization Min-Max
Scaling

TF-IDF
Encoder

Ordinal 
Encoding

map map map map map

reduce map reduce map reduce map reduce map reduce map

…

…

Data 
Augmentation

fork

Dictionary 
Lookup

join



Heuristics 2: ML Pipelines to Positive RA

Normalization

reduce map

Normalization

map

𝑥
𝑦
𝑧

𝑥
𝑦
𝑧

“Ignore” the reduce part

Calculate reduce once on the 
whole (or some similar) 
dataset, and condition on it.

Data 
Augmentation

fork

𝑥
𝑦
𝑧

𝑥
𝑥
𝑦

𝑦
𝑧

𝑥
𝑦
𝑧

⋈
𝑎
𝑏

𝑥
𝑦
𝑧

Dictionary 
Lookup

join

𝑥𝑎
𝑦𝑎
𝑧𝑏



Heuristics 2: Characteristics of Pipelines

• We take ~500K real-world pipelines
• https://arxiv.org/pdf/1912.09536.p

df
• A majority of which fits into the map-

fork pattern, after the conditioning 
heuristics.

• In additional to these pipelines:
• Data federation/market (different 

subsets, union) introduces fork
• Data augmentatin introduces fork

Pipeline sizes

N
um

be
r o

f p
ip

el
in

es

not map-fork after 
conditioning 
reduce on the 
whole dataset

https://arxiv.org/pdf/1912.09536.pdf
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Failure Case (Shapley)

Idea: Data examples that are over-represented 
should have a small Shapley value.

Unbalanced 
training set with 
sensitive feature

Balanced 
test set

Operators

ML Model

Fairness Metric KNN proxy does not work! 
(Conditioning still works)

Why? KNN captures more of a local structure, 
not the populational structure. (HELP!)

How can we identify over-
represented examples to remove?
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Failure Case (Entropy/Expectation)

𝑛

𝑅

𝑑

Uncertainty on features.
Think about it as outputs of 
state-of-the-art data cleaning 
methods – each method 
output a candidate value.

ML Model

Cleaning oracle.
There exist a manual 
cleaning oracle to 
decide the ground truth 
value for each feature.

Accuracy

What if the ML model is 
robust to noise? Or trained in 
a differentially private way?

KNN will probably also not 
work here. Different 
sensitivity to noises. (HELP!)



What’s Next?

Codd’s Table

Positive 
Relational 

Algebra Query
𝑞′(𝐷)

KNN Classifier
𝒜′(𝑞′(𝐷))

Measure

Accuracy
Fairness

Robustness

Takeaway 1
For a dominating number 
of realistic pipelines, for 
their proxy pipeline, we 
can compute exactly the 

Entropy, Expected 
Prediction, and Shapley 

Value, in PTIME.

Takeaway 2
These fundemental quantities, i.e., 

Entropy, Expected Prediction, 
Shapley Value, provide principled 

frameworks for many applications: 
Data cleaning, debugging, 

valuation for ML, Defense against 
backdoor adversarial attacks

Takeaway 3
Use these proxy pipelines 
as a proxy work well in 

many scenarios.

I will also show you cases 
when they don’t.



What is a pipeline, really?

ML Training
𝒜(𝑞(𝐷))

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Feature 
Extraction 
Pipelines
𝑞(𝐷)

Entropy & 
Expectation

Shapley Value & Expected 
Marginal Improvement

We don’t know how to 
talk about it.

In good-old days, this 
is a semiring.

Why? From axioms of 
positive relational algebra.

It gets complex when it 
comes to negation.

But there are still axioms 
and differnet formulations, 
e.g., m-semirings.

What is a FE 
pipeline?

? Can we say anything about this beyond that 
it is a dataflow graph?

? Are all dataflow graphs feature extraction 
pipelines that we care about?

? What are the axioms
describing “care about”?
? What is the corresponding 
algebraic structure?

What is NOT a 
FE pipeline?



What is a good proxy?

ML Training
𝒜(𝑞(𝐷))

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Feature 
Extraction 
Pipelines
𝑞(𝐷)

Entropy & 
Expectation

Shapley Value & Expected 
Marginal Improvement

Codd’s Table

Positive 
Relational 

Algebra Query
𝑞′(𝐷)

KNN Classifier
𝒜′(𝑞′(𝐷))

Measure

Accuracy
Fairness

Robustness

Heuristics 1 Heuristics 2 Heuristics 3Use as a proxy



What is a good proxy? Entropy & 
Expectation

Shapley Value & Expected 
Marginal Improvement

Codd’s Table

Positive 
Relational 

Algebra Query
𝑞′(𝐷)

KNN Classifier
𝒜′(𝑞′(𝐷))

Measure

Accuracy
Fairness

Robustness

Lose dependencies 
and interactions 

of noises

c-table, pc-table?

How to 
reason/approximate 

about the noise 
model?

Lose 
computation

Think about max 
but you remove 
the largest item

Lose global, 
populational 

structure

How to model the 
computation 
components?

What is a better 
proxy to use? 
Capture more 

global structure, 
yet being efficient.



What is a good metric?

ML Training
𝒜(𝑞(𝐷))

ML
Model

Measure

Accuracy
Fairness

Robustness
NULL

Feature 
Extraction 
Pipelines
𝑞(𝐷)

Entropy & 
Expectation

Shapley Value & Expected 
Marginal Improvement

Alternatives? Gradient-based Perturbation?
Efficient estimator of Entropy? 
Rényi Entropy?

Influence Functions?
Leave-one-out?

What are their relationships?
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