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Training becomes faster

Training becomes more automatic/systematic
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N

+ Co-design algorithms, systems and hardware
accelerators (FPGAs) to enable deep integration of ML
into DB, Spark, Serverless, MPI
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Training becomes faster

Training becomes more automatic/systematic

Distributed ML in DB/Serverless/Spark/MPI? Check out
[=] &/ [m]

Bk
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ModelDB NorthStar

MLOps & MLDev made easy? Check out

Automatic Data | Automatic Multtenant /"~ Continuous
Injectionand | | Feasibility ATl Quality
Augmentation / \  Study y € x - Optimization /
DataMagic
Productic
Ga) Mod |p cker RURT
Snoopy
Labour-efficient L_$ ---Er ( 1 dic !‘I
Data Cleaning ¥
o @@@ ..__l

! Multi-tenant
Labour-efficient Q Scheduler Conhnuoro R
Data CPCIean Markel

\
\ S Integration )
~ Acquisition leMI. Training Engine .

|
+ streamline and manage the end-to-end process of

MLDev and MLOps: feasibility study, CI/CD, active
model selection and adaptation, data debugging...




While getting some ML models has
never been easier,




Understanding has never been more important DS3Lab
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D-PIS-r

« Platform A Platform C MLBench

Platform B A Platform D

ML today is now a Data Problem

Rank (%)

» Given the raw features from Kaggle, most AutoML ot .4 "4 | VLDB(2018)
platforms rank in the bottom 50%. Ralae) http://www.vldb.o
» RARY rg/pvldb/voli1/p12

* It is the data that we need to improve, and knowledge

that we need to integrate, to build better ML

applications. et e 10 | Updated version
(2021):

https://arxiv.org/a

bs/1707.00562

20-liu.pdf

Rank (%)

« To improve data, we need to first understand them. —

Rank (%)

s
1 O

Run time (minutes)

D-PBV-r

Rank (%)
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Run time (minutes)


http://www.vldb.org/pvldb/vol11/p1220-liu.pdf
https://arxiv.org/abs/1707.09562
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Q1. Which data problem should I fix first to improve my
accuracy/fairness/robustness?

BEERHE ML Training Measure
> riniinn
i c/q(D) »m
Accuracy
NULL Fairness
Robustness

Q2. Which training example is to blame or is most important for my
accuracy/fairness/robustness?




Two Examples of Understanding

Q1. Which data problem should I fix first to improve my
accuracy/fairness/robustness?
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Understanding these two questions has
a profound impact on ML DevOps.

O ML Training Measure
> TS A(D) >m « Data cleaning for ML
Accuracy « Data debugging for ML
NULL Fairness » Data acquisition for ML
Robustness « Data valuation for ML

Q2. Which training example is to blame or is most important for my
accuracy/fairness/robustness?
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Understanding these two questions has
Q1. Which data problem should I fix first to improve my a profound impact on the ML DevOps.

accuracy/fairness/robustness?

A Ctive Cl e an From Cleaning before ML to Cleaning for ML

Felix Neutatz', Binger Chen', Ziawasch Abedjan?, Eugene Wu®

™ Complaint-driven Training Data Debugging

BOOStClean for Query 2.0

ML Training Measure AlphaClean | = bt s -2

For
cfl (D) > d 7] psTra P
I fl F e :‘:,:;: 3;‘: E-mail: jpei@cs.sfu.ca
Accuracy n uence unC 1w E:l?tg"%: December 1, 2020
ugging Qui

Machind query result

turing (2] wrong label

* at] Rain, a com|
the qual] Rein. & com Abstract
toward intermediate ¢
wemend] oot ca] Data are invaluable. How can we assess the value of data objec-

required| complaints tiv ¢ and quantitatively? Pricing data, or information

NULL

Trad) we are the goods in general, has been studied and practiced in dispersed areas

dataset ff quires retrail R % 3
functions wi

worry. data management, data mining and machine learning. In this arti-

vide an in-d

error m cle, we present a unified, interdisciplinary and comprehensive overview

PRI 5 approaches
‘“‘=¥T"“‘ their effecti of this important direction. We examine various motivations behind
s o data pricing, understand the economics of data pricing and review the
selines wi
the elea development and evolution of pricing models according to a series of
Thus, it \‘Vf";_‘u‘:;"“;: fundamental principles. We discuss both digital products and data
setting o 2020, Compla products. We also consider a series of challenges and directions for

Q2. Which training example is to blame or is most important for my e =2 I T

copyright
Bulletind Sovon0 7

) p o opr 1 Introduction
This i the
accuracys/jairrness/ro ustness: - . ‘ .
o In this digital economics era, data are well recognized as an essential re-
E?.;}if”jtf?.‘[ source for work and life. Many products and services are delivered purely

in digital forms. Many big data applications are built on the second use

or reuse of data [196], that is, the same data are customized and reused by
many applications for different purposes. The extensive sharing and reusing
data has profound implications to economy. For example, digital maps are
often duced for traffic and directions as the i liate usage. However,
Nagaraj [153] finds that mining activities were strongly benefited by open
maps or maps sponsored by governments, particularly for smaller firms with




So, what’s the problem?
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Real-world ML applications

/ don’t often look like this
BESHE ML Training Measure
SR A(D) >m

Accuracy
Fairness

Robustness They look something like this

NULL

Feature
SHERE Extraction ML Training Measure
SHESE Pipelines A(q(D)) ()
q(D) Accuracy
NULL Fairness
Robustness

These data transformations really make things hard!

If the DB community don’t fix this, who else are going to deal with data transformations?
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Q1. Which data problem should I fix first to improve my Entropy &
accuracy/fairness/robustness? Expectation

Feature
SRS Extraction ML Training Measure
= ririiiin
HHEHE Pipelines A(q(D)) ’m
q(D) Accuracy
NULL Fairness
Robustness

Q2. Which training example is to blame or is most important for my ERIEINEAZINERSS D qolSaiel!
accuracy/fairness/robustness? Marginal Improvement




Our Approach DS3Lab
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Feature
/;> S Extraction ML Training Measure
SHEEES Pipelines ()
q(D) Ac§uracy
NULL Fairness
Robustness

Use a$ a proxy @ Heuristics 1 @ Heuristics 2 @ Heuristics 3

O I
Measure
& Y .\

Accuracy

Fairness
‘i‘ A / Robustness [ 31;}
Codd’s Table
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C N
Measure
()
Accuracy
Fairness
A / Robustness
Codd’s Table
Takeaway 1 Takeaway 2 Takeaway 3
For a dominating number These fundemental quantities, i.e., Use these proxy pipelines
of realistic pipelines, Entropy, Expected Prediction, as a proxy
Shapley Value, provide
Data cleaning, debugging, I will also show you
valuation for ML, Defense against
backdoor adversarial attacks
[HELP

)
N\



Overview

» | Theoretical Result

« Entropy/Expectation of ML Training over Incomplete
Information and Uncertainty

« Shapley value of ML Training over Feature Extraction
Pipelines

=  Applications

« Data Cleaning for ML

* Defense against backdoor adversarial attacks

« Data Debugging for ML

- Data Market for ML
» Heuristics of Approximating Real-world Pipelines
» Failure Cases & “Call for Help”
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final ML accuracy? (not all noise matters)

Ill
N

I
T—

i_) Q1. What’s the impact of dirty data to the N

Trainin Measure
28 ML Model >
Accuracy

L

K
|
|
|

d What does this really mean?

|
Uncertainty on features




Unknowns (Incomplete information) in DB DS3Lab @

= What is Unknown in DB?
= How does DB answer queries under Unknowns?

= ... the nightmare of many undergrads in DB class...

mm- SELECT * mm-
—> FROM Person

John WHERE age < 30; 2| e
2 Anna 29 ']‘
K’
3 Kevin | NULL Unknown

4 NULL 30 _ 5 1.qin ML MODEL—> ????




Unknowns (Incomplete information) in DB

= What is NULL?
» Sure/Certain Answer

Codd Table Possible Worlds

pid | name | age pid | name | age J§ pid | name | ase b pid | name | age
1 John 32 1 John 32 1 John 32 1 John 32

—

2  Anna 29 2  Anna 29 2  Anna 29 2  Anna 29
3 Kevin NULL 3 Kevin 1 3 Kevin 2 3 Kevin 30
SELECT * SELECT * SELECT * SELECT *
FROM Person FROM Person FROM Person FROM Person
WHERE age < 30; WHERE age < 30; WHERE age < 30; WHERE age < 30;

mm “h o pid | name | age pid | name | age pid | name | age

2  Anna 20 CEmT— 2  Anna 29 2  Anna 29 2  Anna 29

DS3Lab

ETH ZURICH

If you take this view,
there is nothing stop

us from applying the
same semantics to ML

ansiwoer
3 Kevin 1 3 Kevin 2




ML over Unknowns: Certain Prediction (CP) DS3Lab@
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— Relation with NULL Possible Worlds without NULL
| pid | name | age | | pid | name | age [l pid | name | age [l pid | name | age |
1 John 32 1 John 32 1 John 32 1 John 32
ﬁ
2  Anna 29 2  Anna 29 2  Anna 29 2  Anna 29
3 Kevin {1,2,30} 3 Kevin 1 3 Kevin 2 3 Kevin 30
1. Train ML model 1. Train ML model 1. Train ML model 1. Train ML model
2. Predict on a 2. Predict on a 2. Predict on a 2. Predict on a
new tuple t new tuple t new tuple t new tuple t

l | ! |
YES e YES YES YES |

NO ] NO NO NO |
NULL ] YES NO NO |

33% Yes aleaion YES NO NO |

0.915 <o YES NO NO |




ML over Unknowns: Certain Prediction (CP) DS3Lab

ETH ZURICH
I

R
« Given an input relation R with a known noise model ... L[]
* ... 1t defines a probability distribution over many possible N —
worlds {R;... R,,} R, R, R, R,
» Given a test example x, the expected prediction on x is HEE BEE BEE BEE
CP(x) = EA(R)[x] - - [] ]
where A(R) is a classifier trained on one possible R.
» The entropy is: T
H(A(R)|x]) Train( )
 Intuition of why this is useful:
« Why Entropy goes to 0, noises in training set do not Predict( IEM)

matter at all. (It won’t change the result)

 If we take this view, data cleaning for ML
becomes the process of minimizing Entropy.



Challenge and Result DS3Lab@

ETH ZURICH
Challenges Results
R R R; Rs Ry 1. General Classifier
HEE HEE EEE BEEE BER . #P-Hard
[N B o
N ] ] ] B « Approximation with MCMC
. J 2. K-Nearest Neighbor Classifier
T an * 0O(nd) — Linear in # Unknowns to
— - (.=.) possible explore 0(2"%) many worlds!
rain
d B worlds +  http://vldb.org/pvldb/voli4/p255-
karlas.pdf Trust me ©
Predict( IEM) « Also apply to pipelines with only map
operators



http://vldb.org/pvldb/vol14/p255-karlas.pdf

Shapley Value: Setting DS3Lab@
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—> Q2. What’s the importance of each training example to the final ML —
accuracy? (not all input example matters)
R
Feature
Extraction ML Training Measure
Pipelines A(q(R)) 'm

q(R) Accuracy

Fairness

Robustness




Expected Marginal Improvements

R
]
[ ]
]

Importance of Red tuple? <

Ace( mmm)

Acc( === )

Acc( | | ] )

Acc( o )
[ ] ]

e
Acc( )

Acc( === )

Acc( mmm )

Answer

[ [
Acc( NN )
Acc( | [ ] )

Acc( | [ ] )

Acc( === )

Acc( mmm )

Acc( )

Acc(mmm )

Acc( Empty )

= Improvement 1 =

= Improvement 2
= Improvement 3

= Improvement 4
= Improvement 5

= Improvement 6

= Improvement 7

- Agg

= Improvement 8 _

DS3Lab @
ETH ZURICH
Shapley Value
1 IR|
v(t) = ER-CZR\{t} (lRil) U (Rl- | t> ~UGR)

e—

» Sound game-theoretical foundation

« Many good properties

* Has been shown to work well for
data debugging (w/o feature
extraction pipelines)




Challenge
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Results

]
R R1 == Q) RZ R3 R4 n
HEE HEE EEE BEEE EEEm 2_
T T possible

"{lll

Feature
Extraction
Pipelines

Training

1. General Classifier
« #P-Hard
« Approximation with MCMC
2. K-Nearest Neighbor Classifier

Pipeline Type 1NN

map O(NlogN) 0O(N?
map + fork O(NlogN) O(N?M?)
1-to-many joins O(N*%) O(N%)
Polymonial with PTIME PTIME PTIME

counting oracle

e https://ds3lab.inf.ethz.ch/datascope.
html Trust me ©



https://ds3lab.inf.ethz.ch/datascope.html

Goal: lllustrate how locality of KNN
can help. Similar ideas apply to

both Entropy and Shapley Value.




Data Valuation DS3Lab
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implifi i For P i
Simplified Version (For Presentation) R R,=0 R, R, R,
* Input: . Hili HEE EEE BEEE EEE
« Training Relation R, |R| = n COO
o Target Training Example t € R n ] L]
« Validation Example s € R, s.y is the label of s £
* (Classification task ]
 Utility: v
” L V— U L
UR) =|{r e KNN(R,s):r.y =s.y}|/K 1 )
* Output: the value of t over R )
1 R| Goal: v(t) = =% (\* ) x[U(R; U t) = U(R))]
v(t):—z ( )U RiUt —U(R;)
n! |Rl|
R; €RT




Data Valuation: 1. A Trivial O((}) + nlogn) Algorithm  DS3Lab
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]
Simplified Version (For Presentation) Training Target Validation
 Input: Relation Example Example
» Training Relation R, |R| = n o t & Ry S & Ry
« Target Training Example t € R % L S
« Validation Example s ¢ R S
« Classification task g
» Utility: S
<
g
UR) = |{r e KNN(R,s):r.y = s.y}|/K E
o
* Output: the value of t over R LE
1 IR| £
— 9P
v(t)——z ( )U RiUt — U(R;) n
nt & AR 2
i =RT — Vv




Data Valuation: 1. A Trivial O((}) + nlogn) Algorithm  DS3Lab
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Simplified Version (For Presentation)

Training Validation
- Input: Relation Example
« Training Relation R, |R| = n S € Ry
« Target Training Example t ¢ R [
« Validation Example s € R For K-NN

e (lassification task

- classifier, there is
» Utility:

BEW ¢t 2Ry | only (') possible
choices of top K.

UR) =|{r e KNN(R,s):r.y =s.y}|/K

* Output: the value of t over R

() =% z <||I}:i||) U(Rl- U t> —U(R))

R; ERT

Less Similar to validation Example

<




Data Valuation: 1. A Trivial O((}) + nlogn) Algorithm  DS3Lab

]
Simplified Version (For Presentation)
 Input:

» Training Relation R, |R| = n

« Target Training Example t € R
« Validation Example s ¢ R

« C(Classification task

» Utility:

UR) =|{r e KNN(R,s):r.y =s.y}|/K

* Output: the value of t over R

0 =% z <||I}:i||) U(Rl- U t> —U(R))

R; ERT

Can we do better?

(Yes, this trivial algorithm does not use
all the properties that KNN has)

Less Similar to validation Example

ETH ZURICH

Training Validation
Relation Example

S &Ry
L

Top-1 For K-NN
classifier, there is

BEW ¢t 2Ry | only (') possible
choices of top K.

Top-2 With t added into R, this tuple

o — will be out of Top-3, Top-
e ;I‘Op 3 1/Top-2 will still be in Top-3

Whether these examples in possible world
= does not matter — They won’t be Top-3:
We can simply calculate # worlds.

\4 -

=> For each of ('%]) possible top-K’s,
one only needs to compare the label
of t and the label of the last in top-K.




Data Valuation: 2. An O(nlog n) Algorithm for K = 1 DS3Lab
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Simplified Version (For Presentation) Training Validation
« Input: Relation Example
« Training Relation R, |R| = n S & Ry
L]

« Target Training Example t € R
« Validation Example s ¢ R
 Classification task

» Utility:

UR) =|{r e KNN(R,s):r.y =s.y}|/K

* Output: the value of t over R

() =% z <||I}:i||) U(Rl- U t> —U(R))

R; €RT

Less Similar to validation Example

<

< v(t;_1)?

< given v(t;)

o Ift;_,.y=t;.y:
* v(ti—1) = v(t)
 Elselft,_y.y=s.y #t;.y:
« Count # worlds t; is top-1
 Elseift,.y=s.y #t;_1.y:
« Count # worlds t; is top-1

< v(ty) x U(t) —U(D)




Data Valuation: 3. An O(nlog n) Algorithm DS3Lab
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Simplified Version (For Presentation)

Training Validation
 Input: Relation Example
 Training Relation R, |R| = n S & Ry
« Target Training Example t € R L
« Validation Example s ¢ R
« Classification task [[ty.y = s.y]
. Utility: v(ty) = -

UR) =|{r e KNN(R,s):r.y =s.y}|/K v(ti) — v(ti+1) 4+

[[t;.y=s.y]-1[ti+1.y=s.y] min{K,i}
K i

* Output: the value of t over R

v (t) =% z <||I}:i||) U(Rl- U t> _UR)

R; €RT

Less Similar to validation Example

(1) Sort;
(2) Single Pass Scan

<

(Challenge: how to efficiently, ¥ "5 (7))

m k—m

incrementally maintain one _=g 5= (0

combinatorial term.  waxaw-

m+k’



A single pass of sorting is still too

slow for systems (we have could
have billions data points to sort)




Index in DB

Data Valuation: (g, 6)-Approximation with LSH DS3Lab
ETH ZURICH
Simplified Version (For Presentation) Training Validation
 Input: Relation Example
 Training Relation R, |R| = n P Query — s¢ Ry
« Target Training Example t € R > L
« Validation Example s ¢ R Top-M
« C(Classification task
« Utility: If we set v(ty41) = 0, we
get (%, O)—approximation.
UR) =|{r e KNN(R,s):r.y =s.y}|/K
* Output: the value of t over R All we need is to query an
1' R index with probability 1 —
v(t) = — Z <|R |) U (Rl- U t) — U(R;) 0 returns exact top-M.
n. i
R; €RT
Different from most DB
index, but it exists.
. Hig}}' Subliner under certain conditions
dimensional (a function of relative contrast)




Enough Theory!

How can we use these?




Overview

» Theoretical Result

« Entropy/Expectation of ML Training over Incomplete
Information and Uncertainty

« Shapley value of ML Training over Feature Extraction
Pipelines

= | Applications

« Data Cleaning for ML

* Defense against backdoor adversarial attacks

« Data Debugging for ML

« Data Market
» Heuristics of Approximating Real-world Pipelines
» Failure Cases & “Call for Help”
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Data Cleaning for ML

@E---

Cleaning oracle.
There exist a manual
cleaning oracle to
decide the ground truth
value for each feature.

n

Uncertainty on features.
Think about it as outputs of
state-of-the-art data cleaning
methods — each method
output a candidate value.

How should we prioritize which cell to clean?

()

Accuracy

Idea: Clean examples that
minimize the

CITHA ZURTLUH

Use the results of decades of
research on Sequential

Information Maximization for
entropy minimization

100% per 100‘;..5-% 100% s 100% *
‘AA‘.A “A N e “
=] z @D 'y o
@ prd a (=)
o z =
o 50% * 50% @ 50% 0% =
2 c
= 2 « 2
--# CPClsan ] a*" |-*-e CPClean <]
0% A-A- Random | 0% 7_.: 0% A-A- Random | 0% 7
0% 50%  100% 0% 50%  100%

cxamples Cleanad cxamples Cleaned

(a) Supreme (b) Bank

—:1 ©
100% B [ 100% o 100% | 100% &
Al [&] A [ &)
a*5 E] A B
At @ A ®
A a . =
E = k
o 50% 50% @ 50% A 50% @
w w
5 . S
-+ CPClean S 44" oo CPClean @
0% A-A- Random | 0% = 0% A-A- Random | 0% _;

0% 50% 100%
examples Cleaned

(c) BabyProduct

0% 50% 100%
£xamples Cleaned

(d) Puma

More results in:
http://vldb.org/pvldb/voli14/p255
-karlas.pdf



http://vldb.org/pvldb/vol14/p255-karlas.pdf

Data Cleaning for ML - Entropy Minimization DS3Lab
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Not consistent with Entropy = 0 =>
All Possible Worlds the true value All remaining noises do not

matter — All possible worlds
have the same utility as the
100% clean dataset

O
Value Q‘
O

%
O~ e

oo 8 0 ) ¢
Clean) OO O O@
O

Under this view, Data

Cleaning for ML becomes: Under mild technical conditions,
Houw to find cleaning opeations we can greedily pick the next Lot of interesting studies
0;...0, such that we decrease final cleaning operations o, that (decades) about Sequential
entropy as much as possible? decreases our expected entropy. Information Maximization




Defend against backdoor adversarial attacks DS3Lab@
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Training Set Id_(.ea.: Inject Gaussian noise to the
training set and compute the

Benign Test Example

This allows us to provide certifications on
robustness, similar how people are doing
randomized smoothing for evasion
attacks.

Cat

To our best knowledge, this gives us the first
robustness certification for backdoor attacks
https://arxiv.org/abs/2003.08904

Cat

Cat

Can we make our training process
robust to this type of attacks?



https://arxiv.org/abs/2003.08904

Robustness of Expectations DS3Lab

Inspired by the seminal work of
randmized smoothing, but
significantly generalizes it.

Let’slookat g(x) = E, _5f(x,2)

Informal Theorem

If g(x) = pand z ~ Z with
probability density function ., then

g(x +9)
u(é + z)

= Pz |70

<Z7'(1- p)]

https://arxiv.org/abs/2003.08904

What can we say about g(x) and g(x + §)?

=

ETH ZURICH

Application 1. Defend about Backdoor

g = Ez {2 (x, 2)

Training Set

Injected Gaussian Noise

Training over a new training set x + z, then do inference

Get a certificate looks like: As long as the attacker
introduces a perturbations § with 2-norm smaller
than C, the inference result will not change by A.

When we have a Deep neural networks, sample
some training sets, train a model for each.

When we have a KNN classifier, we can calculate
this term exactly in PTIME.



https://arxiv.org/abs/2003.08904

Robustness of Expectations - Quantum Systems DS3Lab
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Inspired by the seminal work of Application 2. Robustness of Quantum Systems
randmized smoothing, but 0 -
significantly generalizes it. Y ? B https://www.nature.com
. /articles/s41534-021-
Let’slook at g(x) = E,_»f(x,2) Input states, N qbits 00410-5
Quantum Circuit
What can we say about g(x) and g(x + §)?
Informal Theorem Get a certificate looks like: As long as the attacker
» introduces a perturbated state p with
It g(x) = p and z ~ Z with fidelity(p, x) > C, the result of this quantum system
probability density function ., then will not change by A.
g9(x +6) We don’t need to inject noises as in the previous
M(6 + Z) —_ [13 2
> P, <Z7'1- p)] case. We get robustness “for free” because of the

u(z)

probabilistic semantics of quantum systemes.
https://arxiv.org/abs/2003.08904



https://www.nature.com/articles/s41534-021-00410-5
https://arxiv.org/abs/2003.08904

Robustness of Expectations - PDB & Joint Inference DSSLGb

ETH ZURICH
I

Inspired by the seminal work of Application 3. Robustness of PDB & Joint Inference

randmized smoothing, but

. epe ; . https://arxiv.org/abs/2106.06235
significantly generalizes it.

https://arxiv.org/abs/2003.00120

Let’s look at g(x) = E,_,f(x, ) Output ofNNs or PDB
Probabilistic DB queries: e.g., SQL
What can we say about g(x) and g(x + §)? Probabilistic Inference queries: MLN, CRF
Informal Theorem Get a certificate looks like: As long as the attacker
» introduces a perturbations § on x with 2-norm
It g(x) = p and z ~ Z with smaller than C, the result of this quantum system
probability density function ., then will not change by A.
g9(x +6) 5 +72) We don’t need to inject noises as in the previous
> P, “ <Z7'1- p)] case. We get robustness “for free” because of the

H) probabilistic semantics of these probabilistic
https://arxiv.org/abs/2003.08904 inference systems.



https://arxiv.org/abs/2003.08904
https://arxiv.org/abs/2106.06235
https://arxiv.org/abs/2003.00120

Robustness & data cleaning are all naturally
connected to Entropy and Expectations. An

efficient proxy for computing these could
go a long way.




Data Debugging DS3Lab@

ETH ZURICH
I

Idea: Data examples with incorrect labels
Training set with should have a small (often negative)

incorrect labels - Shapley value.

i O(N log N) if we use KNN and if a
pipeline can be conditioned as map-fork.

ML Model :
e Orders of magnitude faster than MCMC:
= < 1 second for reasonable dataset.
Operators 100
90
é 80 . T ety CCC Random
s & 70
~ 60 KNN-Shapley
Y e 0 b ond)
) » A" g 40 TM C-Shapley
S5 jé 30
20 -
Test set o —e— KNN-Shapley

0
©9 992238908902 —e—TM C-Shapley
N 0 T I60 ® o Q (cond)

How can we find out those training
examples with wrong labels? Fraction of data inspected (%)




Data Debugging DS3Lab@
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Idea: Data examples with backdoor
Training set with labels should have a small (often negative)

backdoor examples Aceuracy Shapley value.

i O(N log N) if we use KNN and if a
pipeline can be conditioned as map-fork.

ML Model :
e Orders of magnitude faster than MCMC:
= < 1 second for reasonable dataset.
Operators 100
£ 90 e g .
A < 80 Random
: & 70
S 60 KNN-Shapley
W § 50 (cond)
ﬂ a» 5 40 TM C-Shapley
3 —e— KNN-Shaple
Test set = 10 Py
2

© 00 0 0 Q9 O 9 QO QO e _
ST RER2EE TMC-Shapley

How can we find out those training (cond)

. Fraction of data corrected (%)
examples with backdoor patterns?




Expected marginal improvement / Shapley
value provides a principled framework for

data debugging. An efficient proxy for
computing these could go a long way.




Data Market

—
‘ I Data Market
[ Trusted Storage
Trusted Computation
$
i
() ‘ﬁ‘
4
ML Model
. [
D
%

How should we fairly distribute $ to
each data contributor?

DS3Lab @

ETH ZURICH

Idea: Use Shapley value (which is
actually why we originally looked at this)

O(N log N) algorithm if we use KNN and
if a pipeline can be conditioned as map-

fork.



https://kara.cloud/

Overview

» Theoretical Result

« Entropy/Expectation of ML Training over Incomplete
Information and Uncertainty

« Shapley value of ML Training over Feature Extraction
Pipelines

= Applications
« Data Cleaning for ML

* Defense against backdoor adversarial attacks

« Data Debugging for ML

« Data Market
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» Failure Cases & “Call for Help”
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Heuristics 1: Unknown Noise to Codd’s Table DS3Lab
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HEE
N

?
>
Input Data without Input Data with
Noise Model Noise Model

\ 1. Run a collection of SOTA automatic data cleaning tools
2. Use their cleaning result for each cell as a candidate value
3. Give them a uniform prior




Heuristics 2: ML Pipelines to Positive RA DS3Lab
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 Dataflow using a diverse set of transformations, but
different operators largely fall into two types:

. Stopword String o Data
2 P .
L2ty Logarithm Removal Tokenization rojechion Augmentation
Normalization Min-Max TF-IDF One-Hot Ordinal Dictionary
Scaling Encoder Encoding Encoding Lookup

« Many reduce functions are relatively stable with respect to
the removal of data examples

« Heuristics: If we fix the reduce part to be over the whole
dataset, conditioning on this, we can approximate a
majority of pipelines.




Heuristics 2: ML Pipelines to Positive RA

DS3Lab@

ETH ZURICH

m—p  NOrmalization wp

“Ignore” the reduce part

Calculate reduce once on the
whole (or some similar) VA
dataset, and condition on it.

P  NOrmalization wp

X

Data
Augmentation

X X _— X a
D
— -
X " join | y b
y Z Z
y
YA —
xa
ya
zb




Heuristics 2: Characteristics of Pipelines DS3Lab

ETH ZURICH
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« We take ~500K real-world pipelines

* https://arxiv.org/pdf/1912.09536.p
d—f 80000

» A majority of which fits into the map- & cono
fork pattern, after the conditioning s
h « L. @ 40000 not map-fork after
euristics. E conditioning
.l . . = reduce on the
 In additional to these pipelines: 20000 whole dataset

» Data federation/market (different
subsets, union) introduces fork

« Data augmentatin introduces fork

0 5 10 15 20 25 30

Pipeline sizes



https://arxiv.org/pdf/1912.09536.pdf

Overview

» Theoretical Result

« Entropy/Expectation of ML Training over Incomplete
Information and Uncertainty

« Shapley value of ML Training over Feature Extraction
Pipelines

=  Applications

« Data Cleaning for ML

* Defense against backdoor adversarial attacks

« Data Debugging for ML

« Data Market
» Heuristics of Approximating Real-world Pipelines
= | Failure Cases & “Call for Help”
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Failure Case (Shapley) DS3Lab@
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I
Idea: Data examples that are over-represented
should have a small Shapley value.

Unbalanced
training set with - KNN proxy does not work!
sensitive feature — (Conditioning still works)
race sex | capital_gain capital_loss hours_per week country | target : 100
White  Male 2174 0 40 Us";:g; <=50K ML Model _8 90
White  Male 0 0 13 “Gute | <=50K ) 52 ig ...... Random
White  Male 0 0 40 ghed | 50k / : é 60
Black  Male 0 0 a0 Upited- | 50k O 50 KNN-Shapley (MC
Black Female 0 0 40  Cuba | <=50K Operators g 40 with KNN proxy)
United '% 30 TMC-Shapley (cond)
White Female 0 0 40 States <=50K A g 20
Black Female 0 0 16 Jamaica | <=50K : = 10 —O—TMC—Shapley
Balanced 0
O 10 20 30 40 50 60 70 80
test set

Fraction of data removed (%)

How can we identify over-

D
represented examples to remove? Why? KNN captures more of a local structure,

not the populational structure. (HELP!)




Failure Case (Entropy/Expectation)

Cleaning oracle ,
There exist a manual d I
cleaning oracle to
decide the ground truth
value for each feature.

Uncertainty on features.
Think about it as outputs of
state-of-the-art data cleaning
methods — each method
output a candidate value.

()

Accuracy

DS3Lab@

ETH ZURICH

What if the ML model is
robust to noise? Or trained in
a differentially private way?

KNN will probably also not
work here. Different
sensitivity to noises. (HELP!)




What’s Next? DS3Lab
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C N
Measure
()
Accuracy
Fairness
A / Robustness
Codd’s Table
Takeaway 1 Takeaway 2 Takeaway 3
For a dominating number These fundemental quantities, i.e., Use these proxy pipelines
of realistic pipelines, Entropy, Expected Prediction, as a proxy
Shapley Value, provide
Data cleaning, debugging, I will also show you
valuation for ML, Defense against :
backdoor adversarial attacks
ﬁ'lELP ETH -!-

)
N\



What is a pipeline, really? DS3Lab@

Shapley Value & Expected
Marginal Improvement

ETH ZURICH
I

Feature
IHBHEE Extraction

ML Training

Pipelines A(q(D))
) Accuracy
— Fairness
Robustness
We don’t know how to What is a FE What is NOT a
talk about it. pipeline? FE pipeline?

? Can we say anything about this beyond that
it is a dataflow graph?

In good-old days, this It gets complex when it
is a semiring. comes to negation. ? Are all dataflow graphs feature extraction
pipelines that we care about?

Why? From axioms of But there are still axioms
positive relational algebra.  and differnet formulations, 2 What are the axioms
e.g., m-semirings. describing “care about™?

? What is the corresponding
algebraic structure?



What is a good proxy? DS3Lab@

Shapley Value & Expected
Marginal Improvement

ETH ZURICH

Feature
/:1> IHBHEE Extraction

ML Training
A(q(D))

........... Pipelines
q(D)

Accuracy
Fairness
Robustness

NULL

Use a$ a proxy @ Heuristics 1 @ Heuristics 2 @ Heuristics 3

O I
Measure
" Y ()

Accuracy

Fairness
" A / Robustness [ 31;}
Codd’s Table




What is a good proxy? DS3Lab@
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L Shapley Value & Expected

Marginal Improvement

Measure
< (D)

Accuracy
Y. Fairness
" Robustness
Codd’s Table
Lose dependencies Lose Lose global,
and interactions computation populational
of noises structure
Think about max
c-table, pc-table? but you remove What is a better
the largest item proxy to use?
How to Capture more
reason/approximate How to model the global structure,
about the noise computation yet being efficient.

model? components?



What is a good metric? DS3Lab@
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]
Feature
SHE Extraction ML Training Measure
SEENEE Pipelines A(q(D)) ()
q(D) Acc.:uracy
NULL Fairness
Robustness

Rényi Entropy?

Entropy & Efficient estimator of Entropy?
Expectation Alternatives? : P
— Gradient-based Perturbation:
Shapley Value & Expected Leave-one-out?
Marginal Improvement Influence Functions?
\ J
|

What are their relationships?
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