TOWARDS DEMOCRATIZING DATA SCIENCE

CARSTEN BINNIG

DATA MANAGEMENT LAB, TU DARMSTADT

Minority Report (2002)

VISION: DATA SCIENCE IN THE FUTURE

TODAY'S END USER DEVICES

40110

9.0

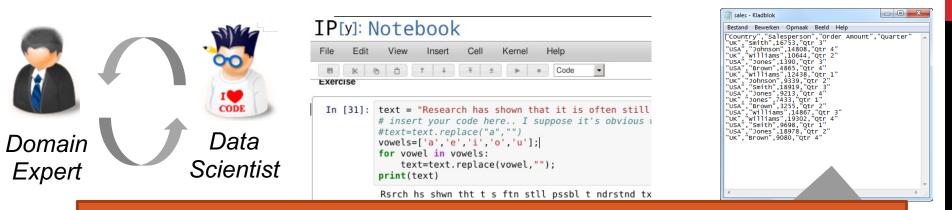
VR1280

... AND THE BIG DATA AND AI SYSTEMS?



4

WHAT ARE THE PAIN POINTS?



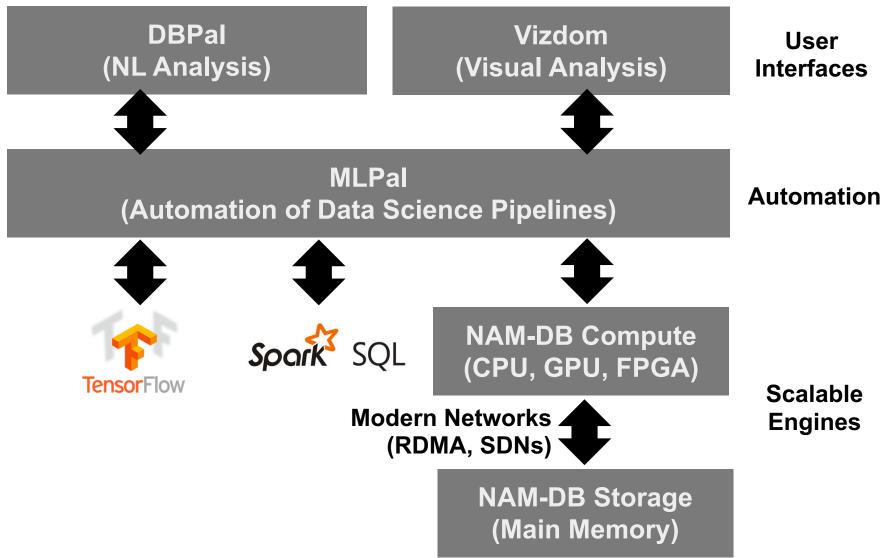
Research Agenda: <u>Revisit Data Science</u> <u>Systems</u> to tackle Pain Points

TensorFloy

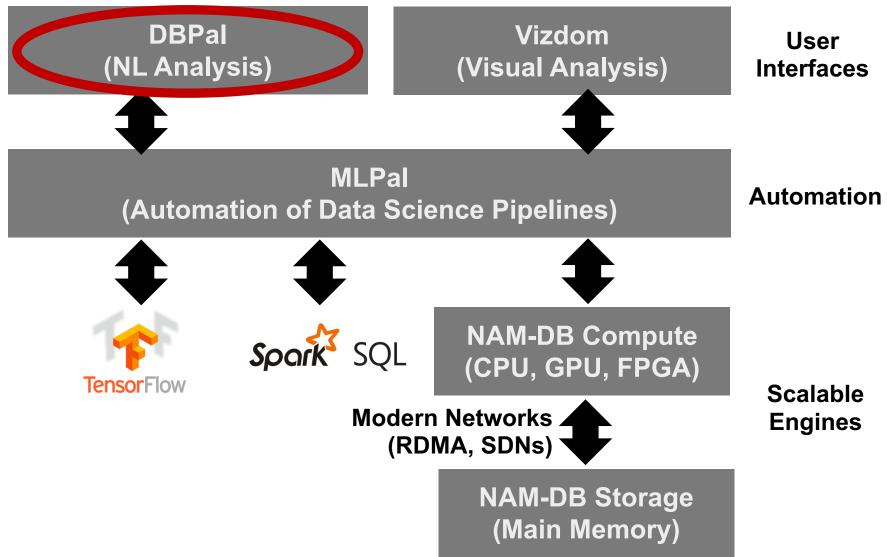


WHAT ARE THE PAIN POINTS?

OUR DATA SCIENCE STACK

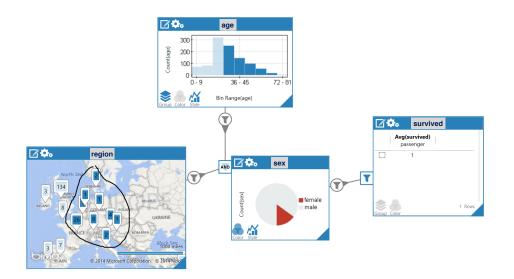


OUR DATA SCIENCE STACK



NL INTERFACE FOR DATABASES (NLIDB)

Visual Interface (e.g., Vizdom):



Natural Language (NL) Interface:

"How many females older than 30 survived the sinking of the Titanic?"

NL interfaces provide a very concise way to query data & can be used hands-free

CHALLENGES FOR NLIDBS

Paraphrased Queries:

- "Show me the patients diagnosed with fever?"
- "What are the patients with a diagnosis fever?"

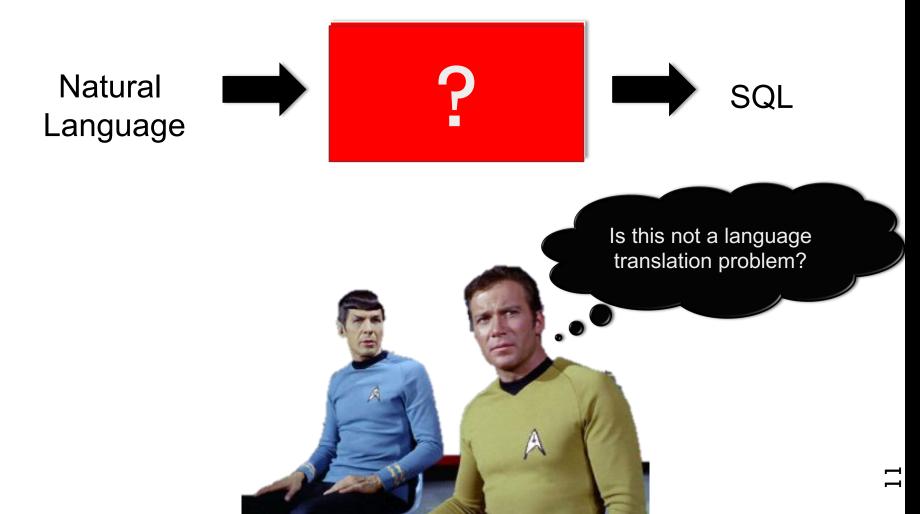
Incomplete Queries:

"Fever Patients?" (fever = diagnosis?)

Ambiguous Queries:

 How many patients with fever come from New York? (New York = city or state?)

NLIDB: DEEP LEARNING TO THE RESCUE



TRAINING DATA IS THE PROBLEM

1. Pick task

2. Manually create training data (e.g., using crowd)

3. Train translation model

(Repeat for every <u>new task</u>)

TRAINING DATA IS THE PROBLEM

RECIPE FOR DEEP LEARNING

1. Pick task

(DATABASE SCHEMA)

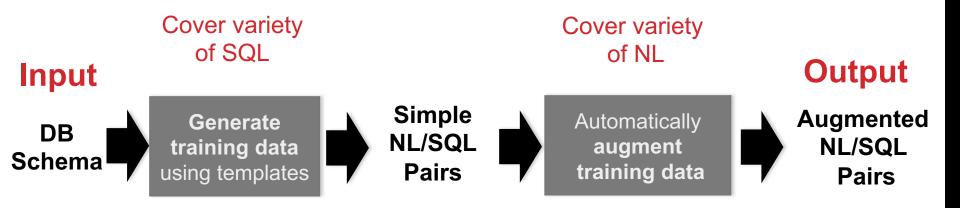
 Manually create training data (e.g., using crowd)
 (NL-SQL PAIRS)

3. Train translation model (SEQ2SEQ)

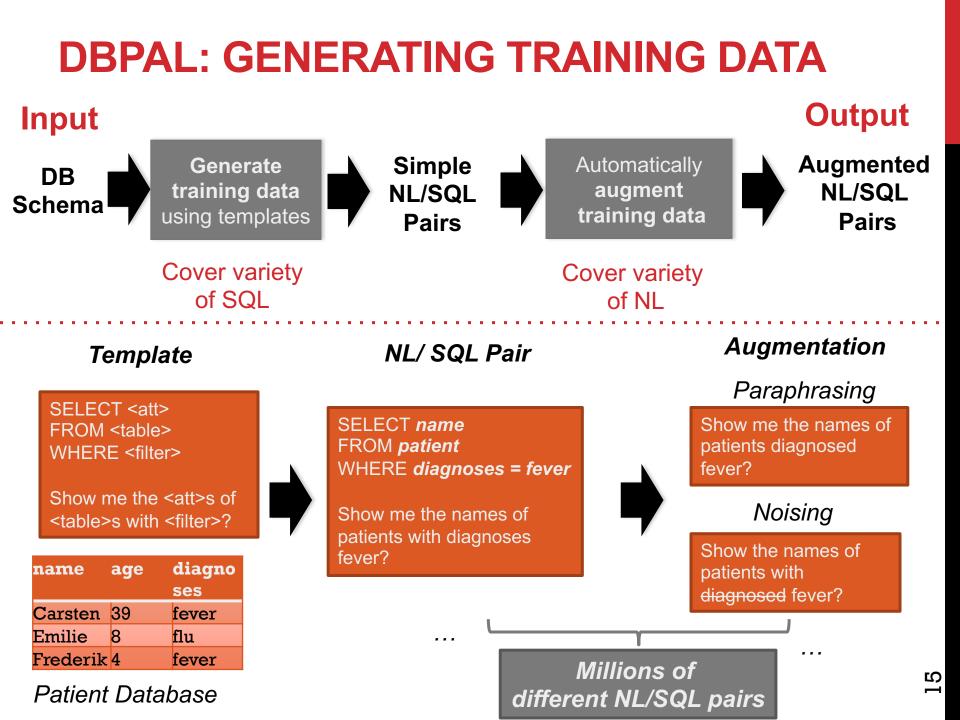
(Repeat for every <u>new database</u> <u>OR if database changes</u>)

DBPAL: GENERATING TRAINING DATA

Main Idea: <u>Synthesize Training Data</u> from Schema (based on weak supervision)



Nathaniel Weir et. al.: DBPal: A Fully Pluggable NL2SQL Training Pipeline. SIGMOD Conference 2020: 2347-2361



DBPAL: EXPERIMENTAL EVALUATION

Benchmarks:

- Patient (simple schema, 400 queries)
- Geo (complex schema, 280 queries)

Baselines

- Traditional: NaLIR (rule-based)
- Deep Model: NSP and NSP++ (manually created training data)

	Patients	GeoQuery
NaLIR (w/o feedback)	15.60%	7.14%
NaLIR (w feedback)	21.42%	N/A
NSP++	N/A	83.9%
NSP (template only)	10.60%	5.0%
DBPal (w/o augmentation)	74.80%	38.60%
DBPal (full pipeline)	75.93%	55.40%

Patient and Geo Benchmark

Patient Benchmark (Breakdown per Linguistic Category)

	Naive	Syntactic	Lexical	Morphological	Semantic	Missing	Mixed
NaLIR (w/o feedback)	19.29%	28.07%	14.03%	17.54%	7.01%	5.77%	17.54%
NaLIR (w feedback)	21.05%	38.59%	14.03%	19.29%	7.01%	5.77%	22.80%
NSP (template only)	19.29%	7.01%	5.20%	17.54%	12.96%	3.50%	8.70%
DBPal (full pipeline)	96.49%	94.7%	75.43%	85.96%	57.89%	36.84%	84.20%

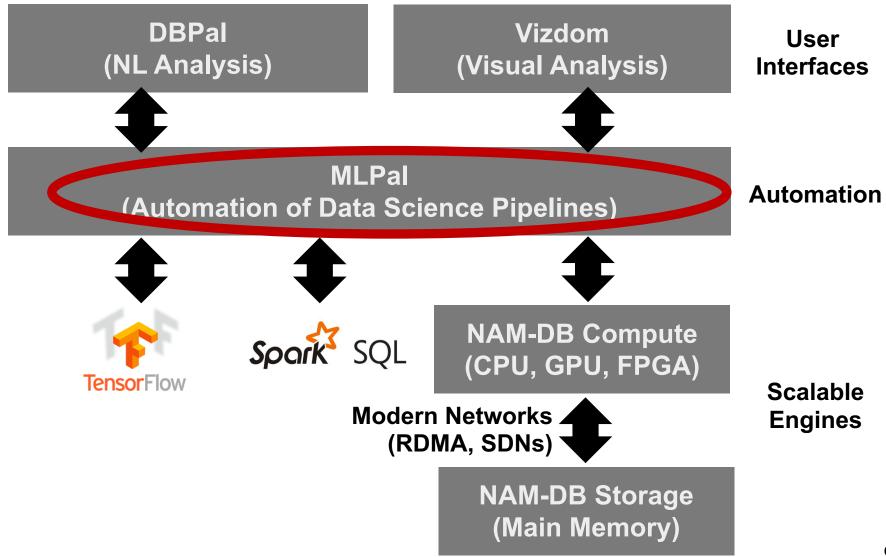
nathaniel@titanx:~\$./interactive.sh

 $\Lambda \Lambda \Lambda | \Lambda |$ 111 111 | | | | | | | |1111 11 /_/_/ |_ | _ | \ 1_1_1

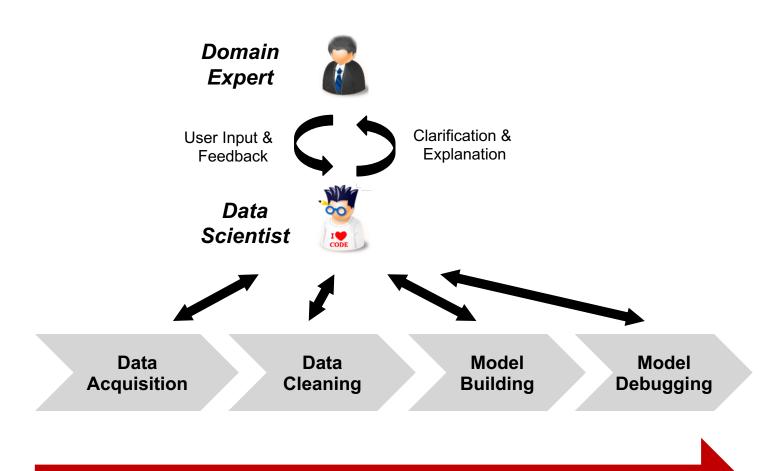
£

```
Loading model...
indexing database...
select distinct first_name from patients
select distinct last_name from patients
select distinct gender from patients
select distinct diagnosis from patients
preparing lemmatizer...
type ":q" to exit
nl query:
```

OUR DATA SCIENCE STACK

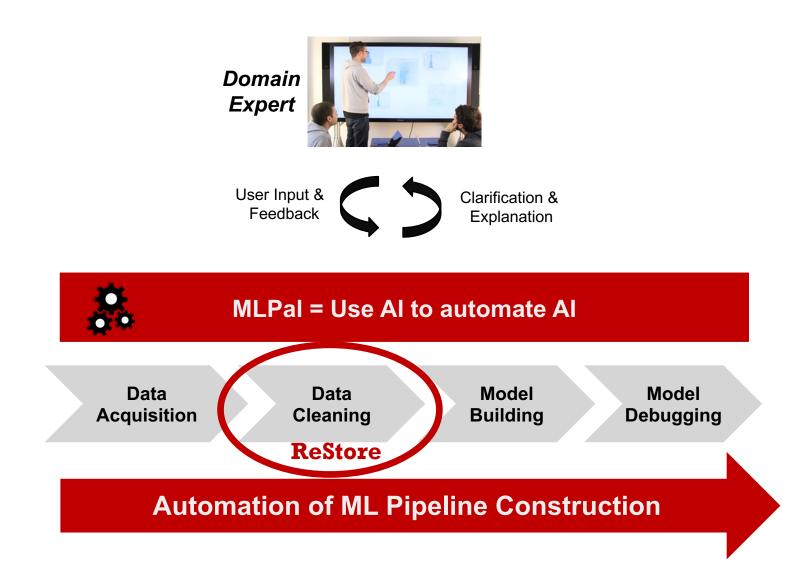


HOW ARE ML PIPELINES BUILD TODAY?



Manually Composed ML Pipelines

WHAT IS THE VISION OF MLPAL?



DECISION MAKING ON INCOMPLETE DATA

Motivation: Many data-driven decisions in organizations are based OLAP and Data Warehouses (e.g., total revenue of last year)

Central Assumption for OLAP: Data is Complete

- Traditionally: Data comes from Internal (curated) Sources (data is complete → holds true)
- Today: Data Lakes, Integration with External Data, ...
 (data is often incomplete → missing rows of a table)

INCOMPLETE DATA IS EVERYWHERE

Example: Housing Price Dataset in US

- Neighborhoods are complete
- Apartments incomplete: only publicly available in some states

Neighborhood [Complete]			Apartment [Inco	mplete]
id	state	pop_density	neighborhood_id	rent
1	NYC	27,000	1	2000\$
2	CA	254	1	3000\$
1				

Complete Apartments for Some States

Sources of Incompleteness

- Systematically Missing Data (e.g., Data only availed in some states)
- Integration of Independent Databases / External Data
- Expensive Data Collection (e.g., Survey Data)

CHALLENGES OF INCOMPLETENESS

Problem: Incompleteness might lead to highly inaccurate results for aggregate queries \rightarrow erroneous decisions

Challenges:

- <u>Bias</u> in the data (e.g., more apartments from states with dense population and higher rents)
- <u>Correlations</u> across tables (e.g., Higher population density → higher apartment prices)

Strategies today:

- **Ignore Problems** \rightarrow Assume Sample is representative
- Manual Cleaning / Completion \rightarrow Expensive cleaning

OVERVIEW OF RESTORE (PART OF MLPAL)

Idea:

- Use <u>available data as evidence</u> to synthesize missing data
- Exploits various <u>signals</u> in existing data (e.g., correlations, distributions)

Neighb	Neighborhood [Complete]				
id	state	pop_density			
1	NYC	27,000			
2	CA	254			
•					

Apartment [Incomplete]				
neighborhood_id	rent			
1	2000\$			
1	3000\$			

Complete Apartments for Some States

Main steps:

- 1. **Offline:** Learn <u>neural completion</u> <u>models</u> from incomplete database
- 2. **Online:** Generate missing data for aggregate-join queries

SELECT AVG(rent) FROM neighborhood NATURAL JOIN apartment GROUP BY state;

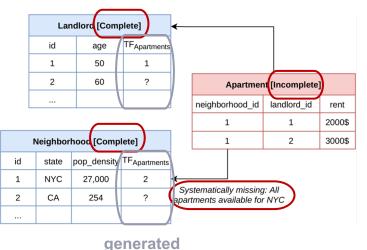
Neighborhood ⋈ Apartment [Completed]						
neighborhood_id	state	pop_density	apartment_id	rent		
1	NYC	27,000	1	2000\$		
1	NYC	27,000	2	3000\$		
2	CA	254	3	3200\$		
2	CA	254	4	2000\$		
2	CA	254	5	1000\$		

Benjamin Hilprecht et al.: ReStore - Neural Data Completion for Relational Databases. SIGMOD 2021

RESTORE: OFFLINE AND ONLINE STEPS

Offline: Schema Annotation by User + Learn Neural Completion Models (both steps are query-independent)

annotated



Landlord

age

60

Completion Model (Landlord → Apartment)

dence Tuple		Output: Missin	g
Tuple	>	Apartment 1	Γup
TF _{Apartments}		landlord_id	
3		2	

id

2

Completion Model (Neighborhood → Apartment)

Input: Evidence Tuple						Output: Missin	g Tuple
Neighborhood Tuple						Apartment 1	uple
	id	state	pop_density	TF _{Apartments}		neighborhood_id	rent
	2	CA	254	3		2	3200\$

Online: Use models at runtime to complete missing data for given query

SELECT AVG(rent) FROM neighborhood NATURAL JOIN apartment GROUP BY state;

Neighborhood 여 Apartment [Completed]						
neighborhood_id	state	pop_density	apartment_id	rent		
1	NYC	27,000	1	2000\$		
1	NYC	27,000	2	3000\$		
2	CA	254	3	3200\$		
2	CA	254	4	2000\$		
2	CA	254	5	1000\$		

Tuple

rent

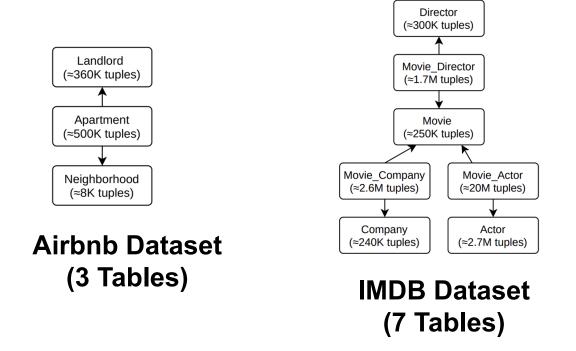
2000\$

ole

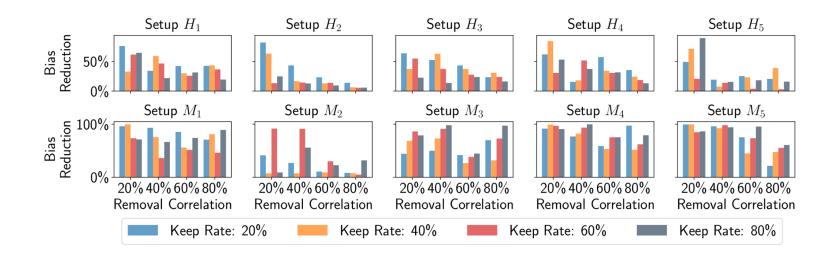
RESTORE: EXPERIMENTAL EVALUATION

Two Real-World Datasets (Airbnb, IMDB/Movies)

- Biased removal of tuples from data sets
- Five different setups per dataset (H1-H5, M1-M5) t + varying keep rate / removal correlation



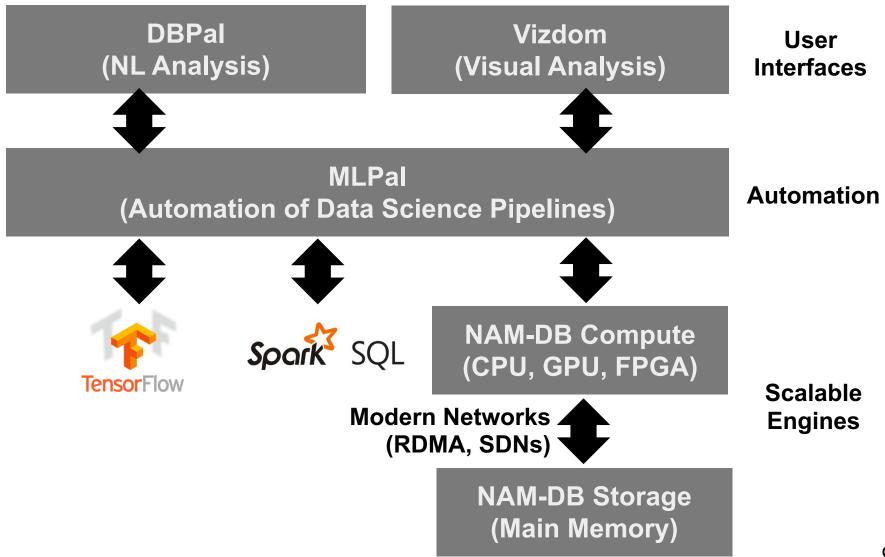
RESTORE: EXPERIMENTAL EVALUATION



Main Findings:

- Bias Reduction up to ~100%
- Varying Accuracy (since predictability varies in the paper: confidence bounds)
- High removal correlation still good results

OUR DATA SCIENCE STACK



FUTURE DIRECTIONS

Systems for Machine Learning

- Automation of Data Science
- Scalable Heterogeneous Systems

Machine Learning for Systems

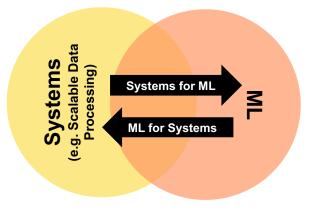
- Learned Data Partitioning
- Learned Optimizers

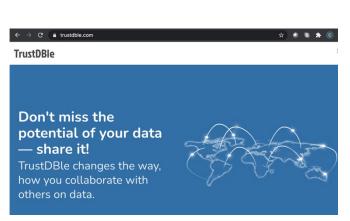
.

. . .

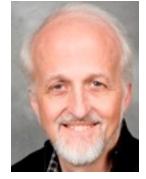
. . .

Other directions: Trustworthy Data Sharing (TrustDBle)





COLLABORATORS AND STUDENTS



THANK YOU FOR YOUR ATTENTION!

