HUMANS IN ONLINE JOB MARKETS

Sihem Amer-Yahia

CNRS Research Director

Laboratoire d'Informatique de Grenoble

Simon Fraser University (Webinar) Nov. 18th, 2020

Online Job Markets

- Web destinations where one finds work
- Open calls to hire cheap, immediate, skilled, and easily accessible labor online

1. Crowdsourcing platforms

- micro-tasks: image labeling, sentiment recognition
- collaborative tasks: citizens for biodiversity

2. Freelancing marketplaces

- micro-gigs: virtual/physical
- resume preparation, website design, plumbing, assembling furniture

Data production in Crowdsourcing

Content creation NYPL Lab

Together We Listen

Help The New York Public Library fix computer-generated transcripts from hundreds of stories from the library's Community Oral History Project.

An example of how the transcript editor works (click for sound)

Select an interview to get started.

Receipt Transcription on AMT

Classify Receipt

Hit Reward: \$0.02

Real readable original receipt

Not a receipt or not readable

The following details can often be found at the top or bottom of the receipt. Enter as much information as you can find.

Find and enter the business phone number:

Phone

Example: (888) 555-1234 or 8885551234

Find and enter the business address:

Address

City

State

Po

Postal code

Example: 321 Fake Street, Los Angeles, CA, 90210

Next

Freelancing Marketplaces

Online and offline help

7

FoW vision

- The current view of online labor markets tends to see humans as low-level agents, in the service of broader Al goals.
- We envision FoW as a place where humans are empowered with the ability to
 - get help from a mix of humans and AI machines
 - enhance their capabilities through skill acquisition
 - feel safe

S. Amer-Yahia, S. B. Roy, L. Chen, A. Morishima, J. Abello, P. Bourhis, F. Charoy, M. Danilevsky, G. Das, G. Demartini, A. Dubey, S. Elbassuon, D. Gross-Amblard, E. Hoareau, M. Inoguchi, J. Kenworthy, I. Kitahara, D. Lee, Y. Li, R. M. Borromeo, P. Papotti, R. Rao, S. Roy, P. Senellart, K. Tajima, S. Thirumuruganathan, M. Tommasi, K. Umemoto, A. Wiggins, K. Yoshida: **Making Al Machines Work for Humans in FoW.** SIGMOD Record, 49 (2), June 2020.

This talk's purpose and outline

Data Science cares about data and insights

- Humans care about
 - how they are treated: fairness
 - how they are doing: skill, feedback
 - how they feel: fatigue, boredom, motivation
 - what they are learning: capital advancement

Fairness

with Shady Elbassuoni, American University in Beirut

Disparity/Unfairness in Online Jobs

The unbalanced targeting of workers based on their **protected** attributes

The French Criminal Law lists 23 such attributes gender, ethnicity, sexual orientation

A. Singh, T. Joachims: Fairness of Exposure in Rankings. KDD 2018

Accès candidat

12

DISTANCE		RECHERCH	HER DES CANDIDATS			
Rayon de recherche		web designer	Où ?	Q		
	_					
30 km		2 913 résultat	s correspondent à votre recherche			
NIVEAU D'EXPÉRIENCE						
Débutant (< 2 ans)	601		Thanh-van L.	Derniers postes		
□ Intermédiaire (2 à 5 ans)	559	Ê	Courdimanche Anne at 9 mais d'aux érience (true métien confordur)	Assistant / Assistante chef de projet		
□ Confirmé (> 5 ans)	1 753		1 an et 9 mois d'expérience (tous métiers confondus) Dernière formation : Communication Visuelle	Chef de projet		
NIVEAU D'ÉTUDES			() Dernière connexion il y a 1 jour	Web designer		
🗆 Aucun diplôme	562					
□ CAP, BEP ou équivalent	33		Aurelien N.			
 Niveau Bac 	44	125	Caluire-et-Cuire	Derniers postes		
🗆 Bac Obtenu	125		 Caluire-et-Cuire 19 ans et 6 mois d'expérience (tous métiers confondus) 	Consultant / Consultante en recrutement		
□ Bac +2	652		Dernière formation : BTS attaché technico commercial	Négociateur / Négociatrice en immobilier		
□ Bac +3	735		() Dernière connexion il y a 1 jour	Délégué commercial / Déléguée commerciale		
□ Bac +4	298		C Dermere connexternity a rijed.	en biens d'équipement auprès des entreprises		
□ Bac +5	431					
□ > Bac +5	33					
			Thierry marcellin F.	Derniers postes		

💡 Paris

6 ans et 10 mois d'expérience (tous métiers confondus) Dernière formation : Développeur Intégrateur En Téléconseiller / Téléconseillère

Agent / Agente de planning informatique

A ranking formulation

Input: a query and a set of workers **Output**: a ranking of workers

User	Gender	Country	Birth	Language	Ethnicity	Experience	Test	Approval	f(u)
U1	Female	America	2000	English	White	5	0.76	0.56	0.620
U2	Female	India	2004	English	Indian	0	0.50	0.20	0.290
U3	Male	America	1976	English	White	14	0.89	0.92	0.911
U4	Male	India	1976	Indian	White	6	0.65	0.65	0.650
U5	Male	Other	1963	Other	Indian	18	0.64	0.76	0.724
U6	Female	India	1963	Indian	Indian	21	0.85	0.90	0.885
U7	Male	America	1995	English	Black	2	0.42	0.20	0.266
U8	Female	America	1982	English	Black	16	0.95	0.98	0.971
U9	Male	Other	2008	English	Other	0	0.30	0.15	0.195
U10	Male	Other	1992	English	White	2	0.32	0.25	0.271
					/				

protected attributes

inferred attributes /

 $f(u) = 0.3 \times LanguageTest(u) + 0.7 \times ApprovalRate(u)$

Most unfair partitioning problem

Given W and f, find partitioning $P = \{p_1, p_2, ..., p_k\}$ such that: argmax unfairness(P, f)subject to $\forall i, j \ p_i \bigcap p_j = \phi$ (1) $\bigcup_{i=1}^{k} p_i = W$ i=1where

$$unfairness(P, f) = \arg_{i,j} EMD(h(p_i, f), h(p_j, f))$$
(2)

and $h(p_i, f)$ is a histogram of the scores of individuals in p_i using f.

TaskRabbit

- 20 most popular services in 45 US cities
- 2,182 unique taskers, 287 queries: Home Cleaning
- Rank of each tasker
 - picture used to assign gender, ethnicity
 - not used: badge, reviews, and hourly rate

Number of queries for different partitionings

Summary of results

- All 112 queries returned white taskers in the top-50
- For the 89 queries (gender): 83% of top-50 are males

Generalization of fairness model

- On any given site, we consider:
 - a set of labeled groups **G**
 - \bullet a set of job-related queries ${\bf Q}$
 - a set of locations L
- Each query q in Q contains a set of keywords such as ``Home Cleaning'' or ``Logo Design''

S. Elbassuoni, S. Amer-Yahia, A. Ghizzawi: **Fairness of Scoring in Online Job Marketplaces.** ACM Tansactions in Data Science, 2020

Discrimination

• The discrimination value of a triple **<g,q,l>** denotes the discrimination of **g** wrt query **q** at location **l**

$$d_{\langle g,q,l\rangle} = \operatorname{avg}_{g'} DIST(g,g') \ \forall g' \in \bigcup_{a \in A(g)} variants(g,a)$$

 variants(g,a) are all groups that differ by one attribute only: e.g., for a group of black females, variants are black males, asian females, white females.

On TaskRabbit

for Home

On Google Jobs

Discrimination of **Black Females** wrt one group, Asian Females: Jaccard (0.8+0.5)/2 = 0.65

Different Fairness aggregations

Worker-fairness

• Which 2 groups TaskRabbit is the most unfair for?

• Query-fairness

• What are the 5 least discriminating jobs for Asian males at all locations?

Location-fairness

• Out of NYC, Boston and Washington DC, what is the least discriminating location for women looking for an event staffing job on TaskRabbit?

On TaskRabbit (June to August 2019)

All jobs offered in 56 cities: 3,311 workers; 5,361 query/location

On Google Job Search (June to August 2019)

TaskRabbit quantification results

Group	EMD	Group	Exp	osure)					
Asian Female Asian Male	0.876 0.755	Asian Female Asian Male	0.82 0.66		Jo	b	EMD	Job		Exposure
Black Female	0.726	Black Female	0.61	5	Ha	andyman	0.692	Handym	an	0.515
Asian	0.694	Asian	0.59	4		vent Staffing	0.639			0.504
Black Male	0.578	Black Male	0.41	3		eneral Cleaning	0.611		Cleaning	0.456
White Female	0.542	White Female	0.35	9		rd Work	0.672		U	0.5
Black	0.498	Black	0.34	1	M	oving	0.604	Moving		0.418
Male	0.468	Female	0.29	9	De	elivery	0.499	Furnitur	e Assembly	0.383
Female	0.468	White Male	0.15	4	Fu	rniture Assembly	0.541	Delivery	,	0.331
White	0.448	Male	0.11	7	Ru	in Errands	0.519	Run Erra	ands	0.352
White Male	0.421	White	0.10	4						
		City		EM	D	City	E	xposure		
		Birmingham, Ul	X	1		Birmingham, UK	0	.926		
		Oklahoma City,	OK	0.99	8	Oklahoma City, C	OK 0	.819		
		Bristol, UK	0.91			Bristol, UK 0.761		.761		
		Manchester, UK	K 0.8		1	Manchester, UK 0.739		.739		
		New Haven, CT		0.83	88 New Haven, CT		0	0.67		
		Milwaukee, WI		0.82	4	Memphis, TN	0	0.668		
		Indianapolis, IN		0.81	5	Milwaukee, WI		0.668		
		Nashville, TN		0.80	8	Charlotte, NC	0	0.643		
		Detroit, MI		0.80	6	Nashville, TN	0	.637		

TaskRabbit comparison results

Group-comparison	Males	Females			
All	0.117	0.299			
Charlotte, NC	0.399	0.345			
Chicago, IL	0.062	0.062			
Nashville, TN	0.330	0.309			
Norfolk, VA	0.331	0.168			
San Francisco Bay Area, CA	0.084	0.084			
St. Louis, MO	0.255	0.190	Job-comparison	Lawn Mowing	Event Decorating
			All	0.500	0.442
			Black	0.445	0.453
Location-com	parison	San Franci	sco Bay Area, CA	Chicago, IL	
All		0.213		0.233	
Back To Orga	0.198		0.135		
Organize & D	eclutter	0.224		0.191	
Organize Clos	et	0.174		0.153	

Summary of fairness

- Framework to quantify discrimination in ranking
 - can be used by workers, requesters, platform designers
 - accommodates many fairness measures
 - accommodates many optimization formulations
- Open questions
 - Explaining discrimination
 - Repairing discrimination

B. Salimi, B. Howe, D. Suciu: **Database Repair Meets Algorithmic Fairness**. SIGMOD Rec. 49(1), 2020

A. Asudeh, H. V. Jagadish, J. Stoyanovich, G. Das: **Designing Fair Ranking Schemes**. SIGMOD 2019

This talk's purpose and outline

- Humans care about
 - how they are treated: fai
 - how they are doing: skill, feedback
 - how they feel: fatigue, boredom, motivation
 - what they are learning: capital advancement

Skill and Motivation

with **Senjuti Basu Roy** The New Jersey Institute of Technology and **Gautam Das** UT Arlington

Self-appointment in AMT

Algorithmic assignment

Self-Appointment

Algorithmic Assignment

Algorithmic Task Assignment

- Input: collaborative tasks, workers
- Output: one team per task
- Each task has
 - Budget, Required Expertise, Expected Quality
 - English comprehension for audio transcription
- Each worker has human factors:
 - Skill, Expected wage, Acceptance ratio

H. Rahman, S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia, G. Das: **Task Assignment Optimization in Collaborative Crowdsourcing.** ICDM 2015

Goal: maximize crowd-work quality

Maximize $\mathcal{V} = \Sigma_{\forall t \in T} v_t$

where $W_1, W_2 \ge 0$ and $W_1 + W_2 = 1$.
Quality Experiments

- Phase 1: 8 multi-choice questions/task, to assess skills
- Phase 2: Collaborative Document Editing task
 - 20 workers asked to produce reports on 5 different topics:
 - 1) Political unrest in Egypt,
 - 2) NSA document leakage,
 - 3) Playstation games,
 - 4) All electric cars
 - 5) Global warming
- Phase 3: Completed tasks evaluated by crowd workers
 - 150 AMT workers (selected similarly)
 - Completeness, Grammar, Neutrality, Clarity, Timeliness, Added-Value

Outcome Quality

Group-level Human Factors

- In some cases, outcome quality was low
 - Conflicting opinions
 - Edit wars

G. Hertel and G. Hertel: **Synergetic effects in working teams**. Journal of Managerial Psychology 2011

A two-stage solution

An instance optimal exact algorithm and a 2approximation algorithm (when distance is a metric)

- 2. Form one team that maximizes **intra-affinity**, and satisfies **skill and cost** (*variant of Compact Location*)
- 3. Decompose into smaller teams, each satisfies **critical mass** and maximizes **inter-affinity** (*variant of Minimum Bisection*)

Experiments with Affinity and Critical Mass

- Translation task with 120 AMT workers
- Region more effective than age/gender

Motivation on AMT

More than fun and money. worker motivation in crowdsourcing-a study on mechanical turk. N. Kaufmann, T. Schulze, and D. Veit. AMCIS 2011

Enjoyment Based Motivation	Skill Variety			2.4	
	Task Identity			2.3	
	Task Autonomy			2.4	
	Direct Job Feedback			2.0	
	Pastime			2.1	
Community Based Motivation	Communtiy Identity			2.0	
	Social Contact		1.3		
Immediate Payoffs	Payment	nent 3.0			3.0
Delayed Payoffs	Signaling			1.9	
	Human Capital Advancement			2.2	
Social Motivation	Action Significance by Values		1.	7	
	Action Significance by Norms & Obligations		1.0		
	Indirect Job Feedback		1.	7	

What to observe?

J. Pilourdault, S. Amer-Yahia, S. B. Roy, D. Lee: Task Relevance and Diversity as Worker Motivation in Crowdsourcing. ICDE 2018

Two Motivation Factors

intrinsic factor, **task diversity** extrinsic factor, **task payment**

$$motiv_{w}^{i}(\mathcal{T}_{w}^{i}) = \alpha_{w}^{i} \times TD(\mathcal{T}_{w}^{i}) + (1 - \alpha_{w}^{i}) \times TP(\mathcal{T}_{w}^{i})$$
worker-specific
to be learned between iterations

Worker Retention

Summary so far

- Human factors dictate algorithm design
- Human factors must be observed
 - Skill, affinity, critical mass yield higher quality contributions
 - Motivation yields better worker retention

This talk's purpose and outline

Humans care about

- how they are treated: fairness
- how they are doing: skill, feedback
- how they feel: fatigue, boredom, motivation
- what they are learning: capital advancement

Peer Learning

with **Payam Esfandiari** and **Senjuti Basu Roy (NJIT)** SIGKDD 2019

Peer Learning

Explore how affinity affects learning potential

- Formalize Learning Potential (LP)
- Formalize Affinity structures (AFF)
- Algorithms with provable theoretical guarantees

Learning Potential

LPD: the least skilled member learns from the most skilled one

LPA: members learn from higher-skilled ones

Affinity

AFFD: function of affinities between all pair of members AFFC: function of affinities between one member and the rest

Example Task

The Queen does not need a passport to travel True or False ?

- Worker 1: True. All British Passports are issued in the Name of Her Majesty, The Queen.
- Worker 2 : I found an article which agrees with your findings. Fun fact: she also doesn't need a driver's license or a license plate on her car.
- Worker 1 : (Mostly false; Large true in practice.) While I couldn't find any law requiring the Royals to accept all gifts.
- Members of the royal family have to accept absolutely all gifts.
- Worker 2 : I found an article which says they make a list of all gifts they receive throughout the year and release it publicly. In addition, they donate many of their gifts.

Team Formation with Affinity and Learning Potential

optimize
$$\sum_{i=1}^{k} LP(g_i), \sum_{i=1}^{k} Aff(g_i)$$

s.t. $|\mathcal{G}| = k, |g_i| = \frac{n}{k}$

Simplified Formulation

The learning potential expressions are polynomial time solvable problems, because the primary operation they require is sorting.

optimize

$$\mathcal{G}$$

$$\sum_{i=1}^{k} Aff(g_i)$$
s.t.
$$\sum_{i=1}^{k} LP(g_i) \ge OptLP$$

$$|\mathcal{G}| = k, |g_i| = \frac{n}{k}$$

Problem variants and algorithms

Problem	Algo.	Approx.	Time
(AffC LpD)	GrAffC-LpD	exact LpD, 3 AffC	O(klogn + nlogk)
(AffC LpA)	GRAFFC-LPA	exact LpD, 3 AffD	O(nlogn)
(AffD LpD)	GrAffD-LpD	exact LpA, 6 AFFC	O(klogn + nlogk)
(AffD LpA)	GrAffD-LpA	exact LpA, 6 AffD	O(nlogn)

Experiments with fact checking/learning

Summary

- We, researchers, have a big role to play in
 - providing fairness assessment tools
 - helping workers find jobs that improve their skills, and account for human factors such as affinity and motivation
- Existing platforms can rethink their design to empower humans and be at the frontier of FoW.

Open challenges

- Fairness
 - explain and repair discrimination
- Learning
 - train for a new job with upskilling strategies

• Putting it all together

- optimize for more than one objective
- enable portability across platforms by building ML-enabled human data management systems