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The Process of Drug Discovery

* A very long and costly process
* On average takes more than 10 years and $2.5B to get a drug approved
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Compound Library

Screen millions of
functional molecules;

Found by serendipity:

Penicillin
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properties.
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Molecule Properties Prediction

* Predicting the properties of molecules or compounds 1s a fundamental
problem 1n drug discovery
* E.g., in the stage of virtual screening

* Each molecule 1s represented as a graph
* The fundamental problem: how to represent a whole molecule (graph)
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Graph Neural Networks

* Techniques for learning node/graph representations
* Graph convolutional Networks (Kipf et al. 2016)
* Graph attention networks (Velickovic et al. 2017)

* Neural Message Passing (Gilmer et al. 2017)

MESSAGE PASSING: M, (hX, hE e,.,) Y ‘/O

AGGREGATE:  mk*! = AGGREGATE{M,(hX, nk, e,,):w € N(v)} 8 y

COMBINE : hk+1 = COMBINE(hK, mk+1) O/

READOUT: g = READOUT{hS: v € G}



InfoGraph: Unsupervised and Semi-supervised
Whole-Graph Representation Learning
(Sun et al. ICLR’20)

* For supervised methods based on graph neural networks, a large
number of labeled data are required for training

* The number of labeled data are very limited 1n drug discovery
* A large amount of unlabeled data (molecules) are available

* This work: how to effectively learn whole graph representations in
unsupervised or semi-supervised fashion

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual
Information Maximization. ICLR’20.



InfoGraph: Unsupervised Whole-Graph
Representation Learning (Sun et al. ICLR’20)

* Maximizing the mutual information between the whole graph
representation H,(G)and all the sub-structure representation 5, .

* Ensure the graph representation capture the predominant information among
all the substructures

« K-layer graph neural networks: -

h(k) = COMBINE®)  hlk=1 AGGREGATEXW Ak~ pk=1 o, u2 N(v)

* Summarize the local structure information at every node i:
hi, = CONCAT({hi"'} K. /)

* Summarize the information of the whole graph:

Ho(G) = READOUT({h}}L 1)

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR’20.



InfoGraph: Unsupervised Whole-Graph
Representation Learning

* Maximizing the mutual information between the whole graph
representation H,(G) and all the sub-structure representation ry

6.0 = argmax - = 3 Lo (g HolG)) 7o |

»v  geg ! uea © D
* We use the Jensen-Shannon MI estimator:
Ly (hg(G); Hy(G)) := Q

Ep[—sp(— T, (hy(2), Hy(2)))] — Ep s lsp(Tp,p (s (2'), Gy (2)))]

* Where x is an input sample, x’ is a negative graph sample, sp(z) = log(1 + e?),
T(,) 1s aneural network
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InfoGraph*: Semi-supervised Graph
Representation Learning

* Two objective functions:
* Supervised loss
* Unsupervised loss

* Simply combining the two objectives using the same encoder may lead
to “negative transfer”

* The two objectives may favor different information

G"| GX|+|G" |
Ltotal — Z Lsupervised (Yqb(Gi)a Oi) + A Z Lunsupervised(h¢(Gj); HQS(GJ))

i=1 j=1



InfoGraph*: Semi-supervised Graph
Representation Learning

* Two different encoders for the supervised and unsupervised tasks

* Maximize the mutual information of the representations learned by the
two encoders at all levels (or layers)

Label «

IG"| IG*|+IGY|
Ltotal = Z Lsupervised (y¢>(Gi)7 Oi) + Z Lunsupervised(hcp(Gj); HLP(G]))




Results on Graph Classification and
Regression

Dataset MUTAG PTC-MR RDT-B RDT-M5K IMDB-B IMDB-M

(No. Graphs) 188 344 2000 4999 1000 1500

(No. classes) 2 2 2 5 2 3

(Avg. Graph Size) 17.93 14.29 429.63 508.52 19.77 13.00

Graph Kernels

RW [14] 83.72+1.50 | 57.85+ 1.30 OMR OMR 50.68 £ 0.26 | 34.65+0.19 Table 1: Graph classification accuracy

SP 3] 85221243 | 5824+244 | 64.11+£0.14 | 39.55+£0.22 | 55.604£0.22 | 37.99+0.30 ) )

GK [55] 81.66 + 2.11 | 57.26+1.41 | 77.34+0.18 | 41.001+£0.17 | 65.87 £0.98 | 43.89+ 0.38 with UnSUperWSed methods

WL 80.72£3.00 | 57.97+0.49 | 68.82+0.41 | 46.06+0.21 | 72.30+3.44 | 46.95+ 0.46

DGK [63] 87.44+2.72 | 60.08+£2.55 | 78.04+0.39 | 41.27+£0.18 | 66.96+0.56 | 44.55+ 0.52

MLG [28] 87.904+ 1.61 | 63.26 + 1.48 > 1 Day > 1 Day 66.55 +0.25 | 41.17 =+ 0.03

Other Unsupervised Methods

node2vec 72.63+10.20 | 58.58 & 8.00 - - - -

sub2vec [1] 61.05+15.80 | 59.99 £6.38 | 71.48+£0.41 | 36.68+0.42 | 55.26 L 1.54 | 36.67 + 0.83

graph2vec [38§] 83.15 4+ 9.25 60.17 & 6.86 75.78 £ 1.03 47.86 £+ 0.26 71.1 £ 0.54 50.44 + 0.87

InfoGraph 89.01+1.13 | 61.65+1.43 | 8250+ 1.42 | 53.46 =1.03 | 73.03 £ 0.87 | 49.69 + 0.53

Target Mu (0) | Alpha (1) | HOMO (2) | LUMO (3) | Gap (4) | R2(5) | ZPVE(6) | UO(7) | U®) | H(©O) | G(10) | Cv(il)
MAE 03201 | 05792 | 0.0060 0.0062 | 0.0091 | 10.0469 | 0.0007 | 0.3204 | 0.2934 | 0.2722 | 0.2948 | 0.2368 ) .
Table 2: Results of semi-supervised
Semi-Supervised Error Ratio .
Mean-Teachers | 1.09 1.00 0.99 1.00 0.97 0.52 0.77 116 | 093 | 079 | 086 | 086 experiments on QM9 data set.
InfoGraph 1.02 0.97 1.02 0.99 1.01 0.71 096 | 085 | 093 | 093 | 099 | 1.00
InfoGraph* 0.99 0.94 0.99 0.99 098 | 0.49 052 | 044 | 058 | 057 | 054 | 0.83
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Molecule Generation and Optimization

* Deep generative models for data generation

d the populatio
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Graphs?

Text generated by by GPT-2,

Image generation
Examples from Internet

(by StyleGAN, From Internet)
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GraphAF: an Autoregressive Flow for

Molecular Graph Generation
(Shi & Xu ICLR’20)

* Formulate graph generation as a sequential decision process
* In each step, generate a new atom
* Determine the bonds between the new atoms and existing atoms
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Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang.
"GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation.” ICLR’20.



Normalizing Flows (Dinh et al. 2016)

* Defines an invertible mapping from a base distribution (e.g. Gaussian
Distribution) to observation space f: 2- X

Data space X Latent space Z
Inference I
. Y S
x~P f i X i S Change-of-Variables
x ¢ 2% ¥ = T
_ dfg ' (x)
pr() = pz (f5 () ) |det—"-

Generation

Z~DPy

&=
x = f(2)

Density estimation using Real NVP (2016)



https://arxiv.org/pdf/1605.08803.pdf

GraphAF: an Autoregressive Flow for
Molecular Graph Generation

* Traverse a graph through BFS-order

* Transform each graph into a sequence of nodes and edges

* Defines an invertible mapping from a base distribution (Gaussian
distribution) to the observations ( graph nodes and edge sequences)
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Advantages of GraphAF

* Strong capacity for data density modeling
* Thanks to normalizing flow-based framework

* Training (from z to €): parallel
 Efficient training process

* Sampling (from € to z): sequential
 Effectively capture the graph structure
* Feasible to incorporate chemical rules

Zy || &2

(b) Autoregressive Flow



Molecule Generation

* Training Data: ZINC250K

* 250K drug-like molecules with a maximum atom number of 38
* 9 atom types and 3 edge types

Method Validity

Validity w/o check  Uniqueness Novelty Reconstruction

JT-VAE 100% — 100%* 100%* 76.7%
GCPN 100% !~~~ "~ 20%t T 99.97%F ~TT100%+ T~ T
MRNN 100% " ______ 65% ———_____ 99.89% ___ 100% — —_____ — J

GraphNVP  42.60% — 94.80% 100% 100%

GraphAF 100% 68% 99.10% 100% 100%
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Goal-Directed Molecule Generation with
Reinforcement Learning

* Fine tune the generation policy with reinforcement learning to
optimize the properties of generated molecules

* State: current subgraph G;
* Action: generating a new atom (1.e. p(X;|G;)) or a new edge
(p(Ai1Gy, X, Aj1:j-1))

* Reward Design: the properties of molecules (final reward) and
chemical validity (intermediate and final reward)



Molecule Optimization

* Properties

* Penalized logP
* QED (druglikeness)

Penalized logP QED
Method Ist  2nd  3rd  Validity 1st 2nd  3rd  Validity
ZINC (Dataset) 452 430 423  100.0% 0.948 00948 0.948 100.0%
JT-VAE (Jin et al.|2018] 530 493 449 100.0% 0925 0911 0910 100.0%
GCPN (You etal]2018%)  7.98 7.85 7.80 100.0% 0.948 0.947 0.946 100.0%
MRNN! (Popova et al.]2019] 8.63 6.08 473 100.0% 0.844 0.796 0.736 100.0%
GraphAF 1223 1129 11.05 100.0% 0.948 0.948 0.947 100.0%

_—

12.23 11.29

-

11.05 10.83

(a) Penalized logP optimization

0.948

//\o

0.947

0

Cl

947

(b) QED optimization



Constrained Optimization

—~ -~
\\)EX — (\_,O?X

-30.21 -22.87
NH*NH — m%
-14.32 3.58

(¢) Constrained optimization
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Retrosynthesis Prediction

* Once a molecular structure 1s designed, how to synthesize 1t?

* Retrosynthesis planning/prediction

* Identify a set of reactants to synthesize a target molecule

(o)

S N/v
Y

Product (Given)

Predict Reactants
—

Reaction Type
(optional)

Reactant A

Reactant B



A Graph to Graphs Framework for
Retrosynthesis Prediction (Shi et al. 2020)

* Each molecule 1s represented as a molecular graph

* Formulate the problem as a graph (product molecule) to a set of graphs
(reactants)

* The whole framework are divided into two stages
* Reaction center 1dentification
* Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.
ICML, 2020.
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The G2Gs Framework (Shi et al. 2020)

— — — — — — —— — — — ——— — — ——— — ——— — — ——— — ———— — ——— — ———— — ——— — — ——— — — — —
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Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction
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Reaction Center Prediction

* An atom pair (i, j) 1s a reaction center if:

* There is a bond between atom i and atom j in product

* There 1s no bond between atom i and atom j in reactants
* A supervised classification problem

* Encode each edge with a graph neural network

4
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Graph Translation

* Translate the incomplete synthon to the final reactant

* A variational graph to graph framework
* A latent variable z 1s introduced to capture the uncertainty during translation

I
I
I
concat — linear =+ Z |
I
I

— pooling —I Edge Node2
N _/ \__labeling _ _ Selection _ _ Selectior
( Y4 e ©
operation action \/©
R-GCN P 3' s~




Experiments

* Experiment Setup
* Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

 Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Taple 2. Top-k exact match accuracy when reaction class is un-
Results of all baselines are directly taken from (Dai et al., 2019).  known. Results of all baselines are taken from (Dai et al., 2019).

Top-k accuracy % Top-k accuracy %

Methods Methods
1 3 5 10 1 3 5 10
Template-free Template-free
Seq2seq 37.4 52.4 57.0 61.7 Transformer 37.9 57.3 62.7 /
G2Gs 61.0 81.3 86.0 88.7 G2Gs 48.9 67.6 72.5 75.5
Template-based Template-based
Retrosim 52.9 73.8 81.2 88.1 Retrosim 37.3 54.7 63.3 74.1
Neuralsym 55.3 76.0 81.4 85.1 Neuralsym 44 .4 65.3 72.4 78.9

GLN 64.2 79.1 85.2 90.0 GLN 52.5 69.0 75.6 83.7




Going Beyond 2D Graphs: 3D Structures

* A more natural and intrinsic representations of molecules: 3D conformations
* Determines its biological and physical activities
* E.g., charge distribution, steric constraints, and interaction with other molecules

C].CO H'-. -'_.'-'I:'-.

1D SMILES 2D Graph 3D Conformation



Conformation Prediction

* For most molecules, their 3D structure are not available

* How to predict valid and stable conformations?
* Each atom is represented as its 3D coordinates

H .
o .
H. L. -~ |
i .
H -

32



Traditional Approaches

* Experimental methods

* Crystallography

* Expensive and time consuming
* Computational methods

* Molecular dynamics, Markov chain Monte Carlo
* Very computational expensive, especially for large molecules

33



Machine Learning Approaches

* Train a model to predict molecular conformations R given the molecular graph G,
i.e., modeling p(R|G) (Mansimov et al. 2019, Stmm and Hernandez-
Lobato 2020)

* Challenges
* Conformations are rotation and translation equivalent
 The distribution p(R|G) is multimodal and very complex

34



Our Solution (Xu et al. 2020)

* A flexible generative model pg (R|G) based on normalizing flows
* Treating pairwise distances d as intermediate variables
* First generating the distance d based G, i.e. pg (d|G)
* Generating conformations based on d and G, 1.e. pg(R|d, G)

w(RIG) = | p(RId.G) - po(diG) dd

* Further correct pg (R|G) with an energy-based tilting term E (R, §)

Po(RIG) / pAR|G) -exp(~Ey(R, G))

Minkai Xu*, Shitong Luo*, Yoshua Bengio, Jian Peng, Jian Tang. Learning Neural Generative Dynamics for Molecular Conformation Generation. In Submission.
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Distance Geometry Generation pAd|G)
* Conditional Graph Continuous Flow (CGCF)

* Defines an invertible mapping between a base distribution and the pairwise
atom distance d conditioning on the molecular graph G

* Defines the continuous dynamics of distance d with Neural Ordinary

Differential Equations (ODE-s):

VA t
1
d = FAd(to), G) = d(to) + f Ad(t), t; Gdt,  d(to) «-N(O,1)
to
G pAd|G) p(R|d, G)
cln’H % Predict distances for Search 3D coordinates
Heo sl - the input graph. given the distances.
InpultI Graph i i
p @ O
Flow Gradient - - [ ]
Dynamics Descent '

Graph Neural
Networks

36



Conformation Prediction »(rid, )

* Defines the distribution of conformation R given the molecular graph
G and the pairwise atom distance d

p(R|d7 g> - %eXp{ B Z a“")(Hru o T’UH2 T duv)Q}

euv€EE

* Trying to find the conformations R that satisfy the distance constraints

p.Ad|G) p(R|d, G)
clr-' Predict distances for Search 3D coordinates
Hxﬂfﬁ-\H - the input graph. given the distances.

Inpu tGraph
Flow Gradient _ m 1
Dynamics Descent

d(to)) CGCF  d(t4) || p(R|d, G) 37




Energy-based Tilting Model

* Further correct pg (R|G) with an energy-based tilting term E (R, §)
P(RIG) /7 pAR|G) -exp(-Ey(R, G))

* Explicitly learn an energy function E, (R, G) with SchNet (Schiitt et al. 2017)

* Neural message passing in 3D space

; Eﬂ |:'> SchNet :> Energy
; G (Schiitt et al. 2017)




Training Energy Model

* Directly training EBMs with maximum likelithood 1s difficult
* Involving a slow sampling process from the model distribution (e.g. with
Langevin dynamics)
* Training EBMs with negative sampling
* Treating observed conformations as positive examples
* Generating negative conformations through the flow-based model pg (R|G)

1
1+ exp(Ey (R, G))

: |
1+ exp(—E¢(R, g))

£nce(R7 g7 ¢> - = Epdata [lOg i| T ]Epe [lOg

39



The Final Sampling Process:

( ) N\ \
5 G pAd|G) p(R|d, G) E,(R,G)
:I:r“ H 4 ’ O Predict distances for Search 3D coordinates Further optimize the
Hegzloy - ' ‘: ‘ the input graph. given the distances. generated structures.
Input Graph J i &
) ) )
AN , , Fy > P > Eq >
Flow 7] Gradient ™ MCMC
N (0, / ) Dynamics Descent
~— —
d(ty) CGCF  d(t1) | p(R|d,G) R
. /.

K-steps of Langevin
Dynamics

40



Examples

Conformations
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Medical Knowledge Graph Construction
(Ongoing)

e >7M Entities, ~300M facts

@) Q“ctd STITCH

e Disease

* Drug

o Comparative Toxicogenomics
Phenotype DrugBank Database

e Gene

* Protein p— %ISEASE

e Side effect Side Effect Resource NTOLOGY

 Biomedical literature

PubL@ed

BRENDA
GENEONTOLOGY e.’E nsembl The Comprehensive Enzyme

Information System

Unifying Biology


http://stitch.embl.de/cgi/input.pl?UserId=I1jqxFrUtIjl&sessionId=ymD4LkudOtr9

Drug Repurposing with Biomedical

Knowledge Graphs (Ongoing)

* Drug repurposing: identifying effective drugs for a disease from
existing approved list

* Predicting the links between diseases and drugs on biomedical
knowledge graphs

Y s Eﬁ@ﬁ



Summary

 Great potential of Al to drug discovery
* Extracting evidence from a huge amount of biomedical data

* Many data 1n this domain are graph-structured
* Molecules, biomedical knowledge graphs

* Great representation learning for drug discovery
* Molecule properties prediction
* De novo molecule design and optimization
» Retrosynthesis prediction
* Drug repurposing



Future Directions

* Going beyond from 2D graphs to 3D structures

* Drug Discovery with Limited Labeled Data
* Active Learning
* Self-supervised Learning
e Multi-task/Transfer Learning
* Few-shot Learning



AAATI’21 Tutorial on
Artificial Intelligence for Drug Discovery

e Date: 8:30 am — 11:45 am, Feb. 03, 2021
* Speakers

Jian Tang Fei Wang Feixiong Cheng
Mila-Quebec Al Institute Weill Cornell Medicine Cleveland Clinic
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GraphAF: an Autoregressive Flow for
Molecular Graph Generation

* G=(A, X), where A 1s the adjacency matrix, X 1s the atom type

* Dequantize a discrete graph G into continuous data

Z{X = X; + u, U~ U[O, 1)d; Z;;l — Aij +u, u~ U[O, 1)b+1

e Define the conditional distributions as:

Node generation: p(2¥1Gy) =N (i, (e¥)?),
where u;X = guX (Gi), OéZ'X = gax (Gi),
Edge generation: p(z3|Gi, Xi, Aipijo1) = N (g5, (a3)?), j € {1,2,..., i — 1},

where ,ufj = gMA(GiniaAi,lzj—l)aaé‘ — gaA(Giin:Ai,lzj—l)

G;: current graph substructure, encoded with graph neural networks



