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The Process of Drug Discovery

• A very long and costly process

• On average takes more than 10 years and $2.5B to get a drug approved
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Molecule Properties Prediction

• Predicting the properties of molecules or compounds is a fundamental
problem in drug discovery

• E.g., in the stage of virtual screening

• Each molecule is represented as a graph

• The fundamental problem: how to represent a whole molecule (graph)



Graph Neural Networks

• Techniques for learning node/graph representations

• Graph convolutional Networks (Kipf et al. 2016)

• Graph attention networks (Veličković et al. 2017)

• Neural Message Passing (Gilmer et al. 2017)
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InfoGraph: Unsupervised and Semi-supervised 
Whole-Graph Representation Learning
(Sun et al. ICLR’20)
• For supervised methods based on graph neural networks, a large

number of labeled data are required for training

• The number of labeled data are very limited in drug discovery

• A large amount of unlabeled data (molecules) are available

• This work: how to effectively learn whole graph representations in
unsupervised or semi-supervised fashion

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual 
Information Maximization. ICLR’20. 



InfoGraph: Unsupervised Whole-Graph
Representation Learning (Sun et al. ICLR’20)

• Maximizing the mutual information between the whole graph
representation and all the sub-structure representation .

• Ensure the graph representation capture the predominant information among
all the substructures

• K-layer graph neural networks:

• Summarize the local structure information at every node i:

• Summarize the information of the whole graph:

Figure1: Illustration of InfoGraph. An input graph isencoded into a featuremap by graph convolutions and jumping
concatenation. Thediscriminator takesa(global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in thebatch and 7 nodes (or patch representations)
in total. For theglobal representation of theblue graph, there will be7 input pairs to thediscriminator and samefor the
red graph. Thus, thediscriminator will take14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1,G2, ...} and a positive integer δ
(the expected embedding size), our goal is to learn aδ-dimensional distributed representation of every graphGi 2 G.

Wedenote thenumber of nodes inGi as |Gi |. Wedenote thematrix of representations of all graphs asΦ 2 R|G|⇥δ.

Semi-supervied Graph Prediction Tasks. Given aset of labeled graphs GL = {G1, · ·· ,G|GL |} with corresponding

output { o1, · · · , o|GL |} , and aset of unlabeled samplesGU = {G|GL |+ 1, · ·· ,G|GL |+ |GU |} , our goal is to learn amodel

that can makepredictions for unseen graphs. Note that in most cases |GU | |GL |.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local nodeneighborhoods. Therepresentations of nodesare learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarizeall theobtained patch representations into afixed length graph-level representation.

Formally, thek-th layer of aGNN is
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whereh
(k )
v is the feature vector of nodev at thek-th iteration/layer (or patch representation centered at node i ), euv

is the featurevector of theedgebetween u and v, andN (v) areneighborhoods to nodev. h
(0)
v isoften initialized as

node features. READOUT can beasimple permutation invariant function such asaveraging or amoresophisticated
graph-level pooling function [70, 71].

Weseek to obtain graph representations by maximizing themutual information between graph-level and patch-level
representations. By doing so, thegraph representations can learn to encodeaspectsof thedata that areshared across
all substructures. Assume that wearegiven aset of training samples G := {Gj 2 G}Nj = 1 with empirical probability
distribution P on the input space. Let φ denote theset of parameters of aK -layer graph neural network. After thefirst k

layers of thegraph neural network, the input graph will beencoded into aset of patch representations { h
(k )
i } Ni= 1. Next,

wesummarize feature vectors at all depths of thegraph neural network into asingle feature vector that captures patch
information at different scales centered at every node. Inspired by [66], weuseconcatenation. That is,

hiφ = CONCAT({ h
(k )
i } Kk= 1) (2)

Hφ(G) = READOUT({ hiφ}
N
i = 1) (3)
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Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR’20. 



InfoGraph: Unsupervised Whole-Graph
Representation Learning

• Maximizing the mutual information between the whole graph
representation and all the sub-structure representation 

• We use the Jensen-Shannon MI estimator:

• Where x is an input sample, x’ is a negative graph sample, sp 𝑧 = log(1 + 𝑒𝑧) , 
𝑇( , ) is a neural network

Figure 1: Illustration of InfoGraph. An input graph is encoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a (global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of the blue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take 14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsuper vised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer δ
(the expected embedding size), our goal is to learn aδ-dimensional distributed representation of every graphGi 2 G.

We denote the number of nodes inGi as |Gi |. Wedenote the matrix of representations of all graphs asΦ 2 R|G|⇥δ.

Semi-super vied Graph Prediction Tasks. Given aset of labeled graphs GL = { G1, · · · , G|GL | } with corresponding

output { o1, · · · , o|GL | } , and aset of unlabeled samplesGU = {G|GL |+ 1, · · · , G|GL |+ |GU | } , our goal is to learn amodel

that can make predictions for unseen graphs. Note that in most cases |GU | |GL |.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local node neighborhoods. The representations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into afixed length graph-level representation.

Formally, the k-th layer of a GNN is

h(k )
v = COMBINE(k )

⇣
h(k− 1)
v ,AGGREGATE(k )

⇣n⇣
h(k− 1)
v , h(k− 1)

u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

whereh
(k )
v is the feature vector of node v at the k-th iteration/layer (or patch representation centered at node i ), euv

is the feature vector of the edge between u and v, andN (v) areneighborhoods to node v. h
(0)
v is often initialized as

node features. READOUT can beasimple permutation invariant function such as averaging or amore sophisticated
graph-level pooling function [70, 71].

Weseek to obtain graph representations by maximizing the mutual information between graph-level and patch-level
representations. By doing so, the graph representations can learn to encode aspects of the data that are shared across
all substructures. Assume that weare given aset of training samples G := {Gj 2 G} Nj = 1 with empirical probability
distribution P on the input space. Let φ denote theset of parameters of aK -layer graph neural network. After thefirst k

layers of the graph neural network, the input graph will be encoded into a set of patch representations { h
(k )
i } Ni = 1. Next,

we summarize feature vectors at all depths of the graph neural network into asingle feature vector that captures patch
information at different scales centered at every node. Inspired by [66], we use concatenation. That is,

hiφ = CONCAT({ h
(k )
i } Kk= 1) (2)

Hφ(G) = READOUT({ hiφ}
N
i = 1) (3)

4

Figure 1: Illustration of InfoGraph. An input graph isencoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a(global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of theblue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer δ
(the expected embedding size), our goal is to learn aδ-dimensional distributed representation of every graphGi 2 G.

Wedenote the number of nodes inGi as |Gi |. We denote the matrix of representations of all graphs asΦ 2 R|G|⇥δ.

Semi-super vied Graph Prediction Tasks. Given aset of labeled graphs GL = {G1, · · · , G|GL | } with corresponding

output { o1, · · · , o|GL | } , and aset of unlabeled samplesGU = {G|GL |+ 1, · · · , G|GL |+ |GU | } , our goal is to learn amodel

that can makepredictions for unseen graphs. Note that in most cases |GU | |GL |.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local nodeneighborhoods. Therepresentations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into afixed length graph-level representation.

Formally, thek-th layer of aGNN is

h(k )
v = COMBINE(k )

⇣
h(k− 1)
v ,AGGREGATE(k )

⇣n⇣
h(k− 1)
v , h(k− 1)

u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

whereh
(k )
v is the feature vector of nodev at thek-th iteration/layer (or patch representation centered at node i ), euv

is the featurevector of the edgebetween u and v, andN (v) areneighborhoods to nodev. h
(0)
v isoften initialized as

node features. READOUT can beasimplepermutation invariant function such asaveraging or amoresophisticated
graph-level pooling function [70, 71].

Weseek to obtain graph representations by maximizing themutual information between graph-level and patch-level
representations. By doing so, thegraph representations can learn to encode aspects of thedata that areshared across
all substructures. Assume that weare given aset of training samples G := { Gj 2 G} Nj = 1 with empirical probability
distribution P on the input space. Let φ denote theset of parameters of aK -layer graph neural network. After thefirst k

layers of the graph neural network, the input graph will be encoded into aset of patch representations { h
(k )
i } Ni = 1. Next,

we summarize feature vectors at all depths of the graph neural network into asingle feature vector that captures patch
information at different scales centered at every node. Inspired by [66], weuse concatenation. That is,

hiφ = CONCAT({ h
(k )
i } Kk= 1) (2)

Hφ(G) = READOUT({ hiφ}
N
i= 1) (3)

4

ℎ𝜙
𝑢

Figure 1: Illustration of InfoGraph. An input graph isencoded into a feature map by graph convolutions and jumping
concatenation. The discriminator takes a(global representation, patch representation) pair as input and decides whether
they are from the same graph. InfoGraph uses a batch-wise fashion to generate all possible positive and negative
samples. For example, consider the toy example with 2 input graphs in the batch and 7 nodes (or patch representations)
in total. For the global representation of theblue graph, there will be 7 input pairs to the discriminator and same for the
red graph. Thus, the discriminator will take14 (global representation, patch representation) pairs as input in this case.

3.1 Problem Definition

Unsupervised Graph Representation Learning. Given a set of graphs G = {G1, G2, ...} and a positive integer δ
(the expected embedding size), our goal is to learn aδ-dimensional distributed representation of every graphGi 2 G.

Wedenote the number of nodes inGi as |Gi |. We denote the matrix of representations of all graphs asΦ 2 R|G|⇥δ.

Semi-super vied Graph Prediction Tasks. Given aset of labeled graphs GL = {G1, · · · , G|GL | } with corresponding

output { o1, · · · , o|GL | } , and aset of unlabeled samplesGU = {G|GL |+ 1, · · · , G|GL |+ |GU | } , our goal is to learn amodel

that can makepredictions for unseen graphs. Note that in most cases |GU | |GL |.

3.2 InfoGraph

We focus on graph neural networks (GNNs)—a flexible class of embedding architectures which generate node
representations by repeated aggregation over local nodeneighborhoods. Therepresentations of nodes are learned by
aggregating the features of their neighborhood nodes, so we refer to these as patch representations. GNNs utilize a
READOUT function to summarize all the obtained patch representations into afixed length graph-level representation.

Formally, thek-th layer of aGNN is

h(k )
v = COMBINE(k )

⇣
h(k− 1)
v ,AGGREGATE(k )

⇣n⇣
h(k− 1)
v , h(k− 1)

u , euv

⌘
: u 2 N (v)

o⌘⌘
, (1)

whereh
(k )
v is the feature vector of nodev at thek-th iteration/layer (or patch representation centered at node i ), euv

is the featurevector of the edgebetween u and v, andN (v) areneighborhoods to nodev. h
(0)
v isoften initialized as

node features. READOUT can beasimplepermutation invariant function such asaveraging or amoresophisticated
graph-level pooling function [70, 71].

Weseek to obtain graph representations by maximizing themutual information between graph-level and patch-level
representations. By doing so, thegraph representations can learn to encode aspects of thedata that areshared across
all substructures. Assume that weare given aset of training samples G := { Gj 2 G} Nj = 1 with empirical probability
distribution P on the input space. Let φ denote theset of parameters of aK -layer graph neural network. After thefirst k

layers of the graph neural network, the input graph will be encoded into aset of patch representations { h
(k )
i } Ni = 1. Next,

we summarize feature vectors at all depths of the graph neural network into asingle feature vector that captures patch
information at different scales centered at every node. Inspired by [66], weuse concatenation. That is,

hiφ = CONCAT({ h
(k )
i } Kk= 1) (2)

Hφ(G) = READOUT({ hiφ}
N
i= 1) (3)
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InfoGraph*: Semi-supervised Graph
Representation Learning

• Two objective functions:

• Supervised loss

• Unsupervised loss

• Simply combining the two objectives using the same encoder may lead
to ”negative transfer”

• The two objectives may favor different information



InfoGraph*: Semi-supervised Graph
Representation Learning

• Two different encoders for the supervised and unsupervised tasks

• Maximize the mutual information of the representations learned by the
two encoders at all levels (or layers)



Results on Graph Classification and
Regression

Table 1: Graph classification accuracy
with unsupervised methods

Table 2: Results of semi-supervised
experiments on QM9 data set.
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Molecule Generation and Optimization

• Deep generative models for data generation

Text generated by by GPT-2,
Examples from Internet

Image generation
(by StyleGAN, From Internet)

Graphs?



GraphAF: an Autoregressive Flow for 
Molecular Graph Generation 
(Shi & Xu ICLR’20)
• Formulate graph generation as a sequential decision process

• In each step, generate a new atom

• Determine the bonds between the new atoms and existing atoms

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. 
”GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation.” ICLR’20.



Normalizing Flows (Dinh et al. 2016)

• Defines an invertible mapping from a base distribution (e.g. Gaussian 
Distribution) to observation space

Density estimation using Real NVP (2016)

Latent spaceData space

𝑥~ Ƹ𝑝𝑥
z = 𝑓(𝑥)

Inference

𝑧~𝑝𝑧
𝑥 = 𝑓(𝑧)

Generation

Change-of-Variables

𝑓: 𝒵 → 𝒳

𝒳 𝒵

𝑝𝒳 𝑥 = 𝑝𝒵 𝑓𝜃
−1 𝑥 det

𝜕𝑓𝜃
−1(𝑥)

𝜕𝑥

https://arxiv.org/pdf/1605.08803.pdf


GraphAF: an Autoregressive Flow for 
Molecular Graph Generation 

• Traverse a graph through BFS-order

• Transform each graph into a sequence of nodes and edges

• Defines an invertible mapping from a base distribution (Gaussian 
distribution) to the observations ( graph nodes and edge sequences)



Advantages of GraphAF

• Strong capacity for data density modeling

• Thanks to normalizing flow-based framework

• Training (from z to 𝜖): parallel

• Efficient training process

• Sampling (from 𝜖 to z): sequential

• Effectively capture the graph structure

• Feasible to incorporate chemical rules



Molecule Generation

• Training Data: ZINC250K

• 250K drug-like molecules with a maximum atom number of 38

• 9 atom types and 3 edge types





Goal-Directed Molecule Generation with 
Reinforcement Learning

• Fine tune the generation policy with reinforcement learning to 
optimize the properties of generated molecules

• State: current subgraph 𝐺𝑖
• Action: generating a new atom (i.e. p(𝑋𝑖|𝐺𝑖)) or a new edge 

(p(𝐴𝑖𝑗|𝐺𝑖 , 𝑋𝑖 , 𝐴𝑖,1:𝑗−1)).

• Reward Design: the properties of molecules (final reward) and 
chemical validity (intermediate and final reward)



Molecule Optimization

• Properties

• Penalized logP

• QED (druglikeness)



Constrained Optimization
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Retrosynthesis Prediction

• Once a molecular structure is designed, how to synthesize it?

• Retrosynthesis planning/prediction

• Identify a set of reactants to synthesize a target molecule

Predict Reactants

Reaction Type 

(optional)

Product (Given)

Reactant A

Reactant B

…

…



A Graph to Graphs Framework for 
Retrosynthesis Prediction (Shi et al. 2020)

• Each molecule is represented as a molecular graph

• Formulate the problem as a graph (product molecule) to a set of graphs 
(reactants)

• The whole framework are divided into two stages

• Reaction center identification

• Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction.

ICML, 2020.



The G2Gs Framework (Shi et al. 2020)
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N

O

F

F

F

N

N

Reaction
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Break to
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Variational
Graph

Translation
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Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction



Reaction Center Prediction

N

O

F

F

F

N

N

N
N

+

• An atom pair (i, j) is a reaction center if: 

• There is a bond between atom i and atom j in product

• There is no bond between atom i and atom j in reactants

• A supervised classification problem

• Encode each edge with a graph neural network



Graph Translation

• Translate the incomplete synthon to the final reactant

• A variational graph to graph framework

• A latent variable z is introduced to capture the uncertainty during translation



Experiments
• Experiment Setup

• Benchmark data set USPTO-50K, containing 50k atom-mapped reactions

• Evaluation metrics: top-𝑘 exact match (based on canonical SMILES) accuracy



Going Beyond 2D Graphs: 3D Structures

• A more natural and intrinsic representations of molecules: 3D conformations

• Determines its biological and physical activities

• E.g., charge distribution, steric constraints, and interaction with other molecules

Under review as a conference paper at ICLR 2021
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinatesaccording to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d, G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) · exp(−Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks (MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into aneural network to compute the value of the dynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = − Epd a t a
logp✓(d|G) = − Epd a t a

logp(d(t0)) +

Z t 1

t 0

Tr

✓
@f ✓,G

@d(t)

◆

dt . (7)
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) · exp(− Eφ(R ,G)). (5)

The tilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by Message Passing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into aneural network to compute the value of the dynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = − Epd a t a
logp✓(d|G) = − Epd a t a

logp(d(t0)) +

Z t 1

t 0

Tr
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Conformation Prediction

• For most molecules, their 3D structure are not available

• How to predict valid and stable conformations?

• Each atom is represented as its 3D coordinates

Under review as a conference paper at ICLR 2021
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinatesaccording to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d, G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) · exp(−Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks (MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into aneural network to compute the value of the dynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = − Epd a t a
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) · exp(− Eφ(R ,G)). (5)

The tilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by Message Passing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into aneural network to compute the value of the dynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = − Epd a t a
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) · exp(− Eφ(R ,G)). (5)

The tilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by Message Passing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into aneural network to compute the value of the dynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = − Epd a t a
logp✓(d|G) = − Epd a t a
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Traditional Approaches

• Experimental methods

• Crystallography

• Expensive and time consuming

• Computational methods

• Molecular dynamics, Markov chain Monte Carlo

• Very computational expensive, especially for large molecules
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Machine Learning Approaches

• Train a model to predict molecular conformations 𝑹 given the molecular graph 𝒢,

i.e., modeling p 𝑹 𝒢 (Mansimov et al. 2019, Simm and Hernandez-
Lobato 2020)

• Challenges

• Conformations are rotation and translation equivalent

• The distribution p 𝑹 𝒢 is multimodal and very complex
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Our Solution (Xu et al. 2020)

• A flexible generative model 𝑝𝜃(𝑹|𝒢) based on normalizing flows

• Treating pairwise distances d as intermediate variables

• First generating the distance d based 𝒢, i. e. 𝑝𝜃(𝒅|𝒢)

• Generating conformations based on d and 𝒢, i.e. 𝑝𝜃(𝑹|𝒅, 𝒢)

• Further correct 𝑝𝜃(𝑹|𝒢) with an energy-based tilting term 𝐸𝜙(𝑹, 𝒢)
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Figure 1: Illustration of theproposed framework. Given the molecular graph, we1) first draw latent variables
from aGaussian prior, and transform them to the desired distance matrix through theConditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinatesaccording to thegenerated distancesand3) further
optimize thegenerated conformation viaaMCMC procedure with theEnergy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph Gand p(R|d,G)
models thedistribution of conformations given thedistances d. In particular, theconditional gener-
ativemodel p✓(d|G) is parameterized as aconditional graph continuous flow, which can beseen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during thedynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting termEφ(R,G):

p✓,φ(R|G) / p✓(R|G) ·exp(−Eφ(R,G)). (5)

Thetilting term isdirectly definedon thejoint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function isalso designed to beinvariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of thewhole framework isgiven in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines thedistribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t;G)dt, d(t0) ⇠N (0, I ) (6)

wherethedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which isawidely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respectivenodes and edges.
Final features are fed into aneural network to compute thevalueof thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-rangedependencies. Theinvertibility of F✓allowsusto not only conduct fast sampling,
but also easily optimize theparameter set ✓by minimizing theexact negative log-likelihood:

Lmle(d,G;✓) = −Epd at a
logp✓(d|G) = −Epd at a

logp(d(t0)) +

Z t 1

t 0

Tr

✓
@f ✓,G

@d(t)

◆

dt . (7)

4

35

Minkai Xu*, Shitong Luo*, Yoshua Bengio, Jian Peng, Jian Tang. Learning Neural Generative Dynamics for Molecular Conformation Generation. In Submission.



Distance Geometry Generation
• Conditional Graph Continuous Flow (CGCF)

• Defines an invertible mapping between a base distribution and the pairwise
atom distance d conditioning on the molecular graph 𝒢

• Defines the continuous dynamics of distance d with Neural Ordinary
Differential Equations (ODEs):
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Figure 1: Illustration of the proposed framework. Given themolecular graph, we1) first draw latent variables
from aGaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinatesaccording to thegenerated distancesand3) further
optimize thegenerated conformation viaaMCMC procedure with theEnergy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph Gand p(R|d,G)
models thedistribution of conformations given thedistances d. In particular, theconditional gener-
ativemodel p✓(d|G) isparameterized as aconditional graph continuous flow, which can beseen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during thedynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in thesampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting termEφ(R,G):

p✓,φ(R|G) / p✓(R|G) ·exp(−Eφ(R,G)). (5)

Thetilting term isdirectly defined on thejoint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function isalso designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of thewhole framework isgiven in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines thedistribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t;G)dt, d(t0) ⇠N (0, I ) (6)

wherethedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which isawidely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respectivenodes and edges.
Final features arefed into aneural network to compute thevalueof thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-rangedependencies. Theinvertibility of F✓allowsusto not only conduct fast sampling,
but also easily optimize theparameter set ✓by minimizing theexact negative log-likelihood:
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) ·exp(−Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = −Epd a t a
logp✓(d|G) = −Epd a t a
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinatesaccording to thegenerated distancesand 3) further
optimize thegenerated conformation viaaMCMC procedure with theEnergy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R|d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during thedynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting termEφ(R,G):

p✓,φ(R|G) / p✓(R |G) ·exp(−Eφ(R,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function isalso designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of thewhole framework isgiven in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines thedistribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t;G)dt, d(t0) ⇠N (0, I ) (6)

wherethedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which is awidely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into aneural network to compute thevalueof thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-rangedependencies. Theinvertibility of F✓allowsusto not only conduct fast sampling,
but also easily optimize theparameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = −Epd a t a
logp✓(d|G) = −Epd at a
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Z t 1

t 0

Tr

✓
@f ✓,G

@d(t)

◆

dt . (7)

4

Graph Neural
Networks

36



Conformation Prediction
• Defines the distribution of conformation R given the molecular graph
𝒢 and the pairwise atom distance d

• Trying to find the conformations R that satisfy the distance constraints
Under review as aconference paper at ICLR 2021
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) ·exp(−Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = −Epd a t a
logp✓(d|G) = −Epd a t a

logp(d(t0)) +
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Energy-based Tilting Model

• Further correct 𝑝𝜃(𝑹|𝒢) with an energy-based tilting term 𝐸𝜙(𝑹, 𝒢)

• Explicitly learn an energy function with SchNet (Schütt et al. 2017)

• Neural message passing in 3D space
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we1) first draw latent variables
from aGaussian prior, and transform them to thedesired distance matrix through theConditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinatesaccording to thegenerated distancesand3) further
optimize thegenerated conformation viaaMCMC procedure with theEnergy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph Gand p(R|d,G)
models thedistribution of conformations given thedistancesd. In particular, theconditional gener-
ativemodel p✓(d|G) is parameterized asaconditional graph continuous flow, which can beseen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during thedynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R|G) with an energy-based tilting termEφ(R,G):

p✓,φ(R|G) / p✓(R|G) ·exp(−Eφ(R,G)). (5)

Thetilting term isdirectly defined on thejoint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R|G) can be used
to provide refinement or optimization for the conformations generated from p✓(R|G). This energy
function isalso designed to beinvariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R|G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of thewhole framework isgiven in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines thedistribution through the following dynamics system:

d = F✓(d(t0),G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t;G)dt, d(t0) ⇠N (0, I ) (6)

wherethedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which isawidely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respectivenodes and edges.
Final features are fed into aneural network to compute thevalueof thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-rangedependencies. Theinvertibility of F✓allowsusto not only conduct fast sampling,
but also easily optimize theparameter set ✓by minimizing theexact negative log-likelihood:
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) ·exp(−Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via a MCMC procedure with the Energy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) ·exp(−Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t ;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of thedynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = −Epd a t a
logp✓(d|G) = −Epd a t a

logp(d(t0)) +

Z t 1

t 0

Tr

✓
@f ✓,G

@d(t)

◆

dt . (7)
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Training Energy Model

• Directly training EBMs with maximum likelihood is difficult

• Involving a slow sampling process from the model distribution (e.g. with
Langevin dynamics)

• Training EBMs with negative sampling

• Treating observed conformations as positive examples

• Generating negative conformations through the flow-based model 𝑝𝜃(𝑹|𝒢)
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Figure 1: Illustration of the proposed framework. Given the molecular graph, we 1) first draw latent variables
from a Gaussian prior, and transform them to the desired distance matrix through the Conditional Graph Con-
tinuousFlow (CGCF); 2) search thepossible3D coordinates according to thegenerated distancesand 3) further
optimize the generated conformation via aMCMC procedure with theEnergy-based Tilting Model (ETM).

where p✓(d|G) models the distribution of inter-atomic distances given the graph G and p(R |d,G)
models the distribution of conformations given the distances d. In particular, the conditional gener-
ative model p✓(d|G) is parameterized as a conditional graph continuous flow, which can be seen as
a continuous dynamics system to transform the random initial noise to meaningful distances. This
flow model enables us to capture the long-range dependencies between atoms in the hidden space
during the dynamic steps.

Though CGCF can capture the dependency between atoms in the hidden space, the distances of
different edges are still independently updated in the transformations, which limits the capacity of
modeling the dependency between atoms in the sampling process. Therefore we further propose to
correct p✓(R |G) with an energy-based tilting term Eφ(R ,G):

p✓,φ(R |G) / p✓(R |G) · exp(− Eφ(R ,G)). (5)

Thetilting term isdirectly defined on the joint distribution of R andG, which explicitly captures the
long-range interaction directly in observation space. The tilted distribution p✓,φ(R |G) can be used
to provide refinement or optimization for the conformations generated from p✓(R |G). This energy
function is also designed to be invariant to rotation and translation.

In the following parts, we will firstly describe our flow-based generative model p✓(R |G) in Sec-
tion 3.2 and elaborate the energy-based tilting model Eφ(R ,G) in Section 3.3. Then we introduce
the two-stage sampling process with both deterministic and stochastic dynamics in Section 3.4. An
illustration of the whole framework is given in Fig. 1.

3.2 FLOW-BASED GENERATIVE MODEL

Conditional Graph Continuous Flows p✓(d|G). We parameterize the conditional distribution of
distances p✓(d|G) with the continuous normalizing flow, named Conditional Graph Continuous
Flow (CGCF). CGCF defines the distribution through the following dynamics system:

d = F✓(d(t0), G) = d(t0) +

Z t 1

t 0

f ✓(d(t), t;G)dt, d(t0) ⇠N (0, I ) (6)

where thedynamic f ✓ is implemented by MessagePassing Neural Networks(MPNN) (Gilmer et al.,
2017), which is a widely used architecture for representation learning on molecular graphs. MPNN
takes node attributes, edge attributes and the bonds lengths d(t) as input to compute the node and
edge embeddings. Each message passing layer updates the node embeddings by aggregating the
information from neighboring nodes according to its hidden vectors of respective nodes and edges.
Final features are fed into a neural network to compute the value of the dynamic f ✓ for all distances
independently. As t1 ! 1 , our dynamic can have an infinite number of steps and is capable to
model long-range dependencies. The invertibility of F✓allowsus to not only conduct fast sampling,
but also easily optimize the parameter set ✓by minimizing the exact negative log-likelihood:

Lmle(d,G;✓) = − Epd a t a
logp✓(d|G) = −Epd a t a

logp(d(t0)) +

Z t 1

t 0

Tr
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K-steps of Langevin
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Examples
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demonstrate that our proposed framework holds the high capacity to model the chemical structures
in the 3D coordinates.

Figure 3: Visualizations of generated graphs from our proposed method. In each row, we show multiple
generated conformations for one molecular graph. For the top 5 rows, the graphs are chosen from the small
molecules in GEOM-QM9 test dataset; and for thebottom 4 rows, graphs arechosen from the larger molecules
in GEOM-Drugs test dataset. C, O, H, S and CI are colored gray, red, white, yellow and green respectively.

H MORE RESULTS OF COVERAGE SCORE

We givemore results of the coverage (COV) score with different threshold δ in Fig. 4. As shown in
the figure, our proposed method can consistently outperform the previous state-of-the-art baselines
CVGAE and GraphDG, which demonstrate the effectiveness of our model.
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Figure 4: Curves of the averaged coverage score with different RMSD thresholds on GEOM-QM9 (left two)
and GEOM-Drugs (right two) datasets. The first and third curves are results of only the generative models,
while the other two are results when further optimized with rule-based force fields.
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Medical Knowledge Graph Construction
(Ongoing)
• >7M Entities, ~300M facts

• Disease

• Drug

• Phenotype

• Gene

• Protein

• Side effect

• Biomedical literature

DrugBank
Comparative Toxicogenomics

Database 

STITCH

http://stitch.embl.de/cgi/input.pl?UserId=I1jqxFrUtIjl&sessionId=ymD4LkudOtr9


Drug Repurposing with Biomedical
Knowledge Graphs (Ongoing)

• Drug repurposing: identifying effective drugs for a disease from
existing approved list

• Predicting the links between diseases and drugs on biomedical
knowledge graphs

?

Figure borrowed from Zeng et al. 2020



Summary

• Great potential of AI to drug discovery

• Extracting evidence from a huge amount of biomedical data

• Many data in this domain are graph-structured

• Molecules, biomedical knowledge graphs

• Great representation learning for drug discovery

• Molecule properties prediction

• De novo molecule design and optimization

• Retrosynthesis prediction

• Drug repurposing



Future Directions

• Going beyond from 2D graphs to 3D structures

• Drug Discovery with Limited Labeled Data

• Active Learning

• Self-supervised Learning

• Multi-task/Transfer Learning

• Few-shot Learning



AAAI’21 Tutorial on
Artificial Intelligence for Drug Discovery

• Date: 8:30 am – 11:45 am, Feb. 03, 2021

• Speakers

Jian Tang
Mila-Quebec AI Institute

Fei Wang
Weill Cornell Medicine

Feixiong Cheng
Cleveland Clinic
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GraphAF: an Autoregressive Flow for 
Molecular Graph Generation

• G=(A, X), where A is the adjacency matrix, X is the atom type

• Dequantize a discrete graph G into continuous data 

• Define the conditional distributions as: 

Node generation:

Edge generation:

𝑮𝒊: current graph substructure, encoded with graph neural networks


