Graph Representation Learning for Drug Discovery

Jian Tang Mila-Quebec AI Institute CIFAR AI Research Chair HEC Montreal

www.jian-tang.com

The Process of Drug Discovery

- A very long and costly process
 - On average takes more than 10 years and \$2.5B to get a drug approved

Molecules } The state (Ž× $\neg \bigcirc$ $\overline{\mathbf{Q}}$ 0-4 \$ ____{ \mathcal{P} \int $\sim \sim \sim$

Research Problems

Molecule Properties Prediction

- Predicting the properties of molecules or compounds is a fundamental problem in drug discovery
 - E.g., in the stage of virtual screening
- Each molecule is represented as a graph
- The fundamental problem: how to represent a whole molecule (graph)

Graph Neural Networks

- Techniques for learning node/graph representations
 - Graph convolutional Networks (Kipf et al. 2016)
 - Graph attention networks (Veličković et al. 2017)
- Neural Message Passing (Gilmer et al. 2017)

MESSAGE PASSING: $M_k(h_v^k, h_w^k, e_{vw})$

AGGREGATE: $m_v^{k+1} = \text{AGGREGATE}\{M_k(h_v^k, h_w^k, e_{vw}): w \in N(v)\}$

COMBINE: $h_v^{k+1} = \text{COMBINE}(h_v^k, m_v^{k+1})$

READOUT: $g = \text{READOUT}\{h_v^K : v \in G\}$

InfoGraph: Unsupervised and Semi-supervised Whole-Graph Representation Learning (Sun et al. ICLR'20)

- For supervised methods based on graph neural networks, a large number of labeled data are required for training
- The number of labeled data are very limited in drug discovery
 - A large amount of unlabeled data (molecules) are available
- This work: how to effectively learn whole graph representations in unsupervised or semi-supervised fashion

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR'20.

InfoGraph: Unsupervised Whole-Graph Representation Learning (Sun et al. ICLR'20)

- Maximizing the **mutual information** between the whole graph representation $H_{\varphi}(G)$ and all the sub-structure representation h_{φ}^{i} .
 - Ensure the graph representation capture the predominant information among all the substructures
- K-layer graph neural networks:

 $h_{v}^{(k)} = \text{COMBINE}^{(k)} h_{v}^{(k-1)}, \text{AGGREGATE}^{(k)} h_{v}^{(k-1)}, h_{u}^{(k-1)}, e_{uv} : u 2 N(v)$

- Summarize the local structure information at every node *i*: $h_{\varphi}^{i} = \text{CONCAT}(\{h_{i}^{(k)}\}_{k=1}^{K})$
- Summarize the information of the whole graph:

$$H_{\varphi}(G) = \text{READOUT}(\{h_{\varphi}^{i}\}_{i=1}^{N})$$

Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR'20.

InfoGraph: Unsupervised Whole-Graph Representation Learning

• Maximizing the **mutual information** between the whole graph representation $H_{\varphi}(G)$ and all the sub-structure representation \vec{h}_{ϕ}^{u}

$$\hat{\phi}, \hat{\psi} = \operatorname*{arg\,max}_{\phi,\psi} \sum_{G \in \mathbf{G}} \frac{1}{|G|} \sum_{u \in G} I_{\phi,\psi}(\vec{h}^u_\phi; H_\phi(G)).$$

• We use the Jensen-Shannon MI estimator:

 $I_{\phi,\psi}(h^i_{\phi}(G);H_{\phi}(G)):=$

 $\mathbb{E}_{\mathbb{P}}[-\operatorname{sp}(-T_{\phi,\psi}(\vec{h}^{i}_{\phi}(x),H_{\phi}(x)))] - \mathbb{E}_{\mathbb{P}\times\tilde{\mathbb{P}}}[\operatorname{sp}(T_{\phi,\psi}(\vec{h}^{i}_{\phi}(x'),G_{\phi}(x)))]$

• Where x is an input sample, x' is a negative graph sample, $sp(z) = log(1 + e^z)$, T(,) is a neural network

InfoGraph*: Semi-supervised Graph Representation Learning

- Two objective functions:
 - Supervised loss
 - Unsupervised loss
- Simply combining the two objectives using the same encoder may lead to "negative transfer"
 - The two objectives may favor different information

$$L_{\text{total}} = \sum_{i=1}^{|\mathbb{G}^{L}|} L_{\text{supervised}}(y_{\phi}(G_{i}), o_{i}) + \lambda \sum_{j=1}^{|\mathbb{G}^{L}| + |\mathbb{G}^{U}|} L_{\text{unsupervised}}(h_{\phi}(G_{j}); H_{\phi}(G_{j}))$$

InfoGraph*: Semi-supervised Graph Representation Learning

- Two different encoders for the supervised and unsupervised tasks
- Maximize the mutual information of the representations learned by the two encoders at all levels (or layers)

Results on Graph Classification and Regression

OMR

 39.55 ± 0.22

 41.01 ± 0.17

 46.06 ± 0.21

 41.27 ± 0.18

> 1 Day

 50.68 ± 0.26

 55.60 ± 0.22

 65.87 ± 0.98

 72.30 ± 3.44

 66.96 ± 0.56

 66.55 ± 0.25

 34.65 ± 0.19

 37.99 ± 0.30

 43.89 ± 0.38

 46.95 ± 0.46

 44.55 ± 0.52

 41.17 ± 0.03

Dataset	MUTAG	PTC-MR	RDT-B	RDT-M5K	IMDB-B	IMDB-M
(No. Graphs)	188	344	2000	4999	1000	1500
(No. classes)	2	2	2	5	2	3
(Avg. Graph Size)	17.93	14.29	429.63	508.52	19.77	13.00

Graph Kernels

OMR

 64.11 ± 0.14

 77.34 ± 0.18

 68.82 ± 0.41

 78.04 ± 0.39

RW [14]

GK 55

WL 54

DGK 68

MLG 28

SP 3

 83.72 ± 1.50

 85.22 ± 2.43

 81.66 ± 2.11

 80.72 ± 3.00

 87.44 ± 2.72

 87.94 ± 1.61

 57.85 ± 1.30

 58.24 ± 2.44

 57.26 ± 1.41

 57.97 ± 0.49

 60.08 ± 2.55

 $\mathbf{63.26} \pm \mathbf{1.48}$

Table 1: Graph classification accuracy with unsupervised methods

 .48
 > 1 Day

 Other Unsupervised Methods

node2vec [17]	72.63 ± 10.20	58.58 ± 8.00	-	-	-	-
sub2vec 👖	61.05 ± 15.80	59.99 ± 6.38	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54	36.67 ± 0.83
graph2vec 38	83.15 ± 9.25	60.17 ± 6.86	75.78 ± 1.03	47.86 ± 0.26	71.1 ± 0.54	50.44 ± 0.87
InfoGraph	89.01 ± 1.13	61.65 ± 1.43	82.50 ± 1.42	53.46 ± 1.03	73.03 ± 0.87	49.69 ± 0.53

Target	Mu (0)	Alpha (1)	HOMO (2)	LUMO (3)	Gap (4)	R2 (5)	ZPVE(6)	U0 (7)	U (8)	H (9)	G(10)	Cv (11)
MAE	0.3201	0.5792	0.0060	0.0062	0.0091	10.0469	0.0007	0.3204	0.2934	0.2722	0.2948	0.2368
Semi-Supervised						Error Ratio)					
Mean-Teachers	1.09	1.00	0.99	1.00	0.97	0.52	0.77	1.16	0.93	0.79	0.86	0.86
InfoGraph	1.02	0.97	1.02	0.99	1.01	0.71	0.96	0.85	0.93	0.93	0.99	1.00
InfoGraph*	0.99	0.94	0.99	0.99	0.98	0.49	0.52	0.44	0.58	0.57	0.54	0.83

Table 2: Results of semi-supervised experiments on QM9 data set.

Research Problems

Molecule Generation and Optimization

• Deep generative models for data generation

Image generation (by StyleGAN, From Internet)

Text generated by by GPT-2 Examples from Internet

Graphs?

GraphAF: an Autoregressive Flow for Molecular Graph Generation (Shi & Xu ICLR'20)

- Formulate graph generation as a sequential decision process
 - In each step, generate a new atom
 - Determine the bonds between the new atoms and existing atoms

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR'20.

Normalizing Flows (Dinh et al. 2016)

• Defines an invertible mapping from a base distribution (e.g. Gaussian Distribution) to observation space $f: z \to x$

Change-of-Variables

$$p_{\chi}(x) = p_{Z}\left(f_{\theta}^{-1}(x)\right) \left| \det \frac{\partial f_{\theta}^{-1}(x)}{\partial x} \right|$$

Density estimation using Real NVP (2016)

GraphAF: an Autoregressive Flow for Molecular Graph Generation

- Traverse a graph through BFS-order
 - Transform each graph into a sequence of nodes and edges
- Defines an invertible mapping from a base distribution (Gaussian distribution) to the observations (graph nodes and edge sequences)

Advantages of GraphAF

- Strong capacity for data density modeling
 - Thanks to normalizing flow-based framework
- Training (from z to ϵ): parallel
 - Efficient training process
- Sampling (from ϵ to z): sequential
 - Effectively capture the graph structure
 - Feasible to incorporate chemical rules

(b) Autoregressive Flow

Molecule Generation

- Training Data: ZINC250K
 - 250K drug-like molecules with a maximum atom number of 38
 - 9 atom types and 3 edge types

Method	Validity	Validity w/o check	Uniqueness	Novelty	Reconstruction	
JT-VAE	100%	_	$100\%^{\ddagger}$	$100\%^{\ddagger}$	76.7%	-
GCPN	100%	20%	99.97% [‡]	100%*-		!
MRNN	100%	65%	99.89%	100%		
GraphNVP	42.60%	<u> </u>	94.80%	100%	100%	
GraphAF	100%	68%	99.10%	100%	100%	_

0,040 2mg ,R $bf' \sim p ble and$ et yo J~~ 200 3-20 $\overline{\mathbf{Q}}$ to the arra - LO γ

Goal-Directed Molecule Generation with Reinforcement Learning

- Fine tune the generation policy with reinforcement learning to optimize the properties of generated molecules
- State: current subgraph *G_i*
- Action: generating a new atom (i.e. $p(X_i|G_i)$) or a new edge $(p(A_{ij}|G_i, X_i, A_{i,1:j-1})).$
- **Reward Design**: the properties of molecules (final reward) and chemical validity (intermediate and final reward)

Molecule Optimization

- Properties
 - Penalized logP
 - QED (druglikeness)

Mathad		Penali	zed logP		QED				
Method	1st	2nd	3rd	Validity	1st	2nd	3rd	Validity	
ZINC (Dataset)	4.52	4.30	4.23	100.0%	0.948	0.948	0.948	100.0%	
JT-VAE (Jin et al., 2018)	5.30	4.93	4.49	100.0%	0.925	0.911	0.910	100.0%	
GCPN (You et al., 2018a)	7.98	7.85	7.80	100.0%	0.948	0.947	0.946	100.0%	
MRNN ¹ (Popova et al., 2019)	8.63	6.08	4.73	100.0%	0.844	0.796	0.736	100.0%	
GraphAF	12.23	11.29	11.05	100.0%	0.948	0.948	0.947	100.0%	

Constrained Optimization

-14.32 3.58 (c) Constrained optimization

Research Problems

Retrosynthesis Prediction

- Once a molecular structure is designed, how to synthesize it?
- Retrosynthesis planning/prediction
 - Identify a set of reactants to synthesize a target molecule

A Graph to Graphs Framework for Retrosynthesis Prediction (Shi et al. 2020)

- Each molecule is represented as a molecular graph
- Formulate the problem as a graph (product molecule) to a set of graphs (reactants)
- The whole framework are divided into two stages
 - Reaction center identification
 - Graph Translation

Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction. ICML, 2020.

The G2Gs Framework (Shi et al. 2020)

Shi et al., 2020, A Graph to Graphs Framework for Retrosynthesis Prediction

Reaction Center Prediction

- An atom pair (*i*, *j*) is a reaction center if:
 - There is a bond between atom *i* and atom *j* in product
 - There is no bond between atom *i* and atom *j* in reactants
- A supervised classification problem
 - Encode each edge with a graph neural network

Graph Translation

- Translate the incomplete synthon to the final reactant
- A variational graph to graph framework
 - A latent variable z is introduced to capture the uncertainty during translation

Experiments

- Experiment Setup
 - Benchmark data set USPTO-50K, containing 50k atom-mapped reactions
 - Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Results of all baselines are directly taken from (Dai et al., 2019).

Table 2. Top-k exact match accuracy when reaction class is unknown. Results of all baselines are taken from (Dai et al., 2019).

Methods	Top- k accuracy %				Methods	Top- k accuracy %				
	1	3	5	10	Wiethous	1	3	5	10	
Template-free					Template-free					
Seq2seq G2Gs	37.4 61.0	52.4 81.3	57.0 86.0	61.7 88.7	Transformer G2Gs	37.9 48.9	57.3 67.6	62.7 72.5	/ 75.5	
Template-based						Templ	ate-based			
Retrosim Neuralsym GLN	52.9 55.3 64.2	73.8 76.0 79.1	81.2 81.4 85.2	88.1 85.1 90.0	Retrosim Neuralsym GLN	37.3 44.4 52.5	54.7 65.3 69.0	63.3 72.4 75.6	74.1 78.9 83.7	

Going Beyond 2D Graphs: 3D Structures

- A more natural and intrinsic representations of molecules: 3D conformations
 - Determines its biological and physical activities
 - E.g., charge distribution, steric constraints, and interaction with other molecules

Conformation Prediction

- For most molecules, their 3D structure are not available
- How to predict valid and stable conformations?
 - Each atom is represented as its 3D coordinates

Traditional Approaches

- Experimental methods
 - Crystallography
 - Expensive and time consuming
- Computational methods
 - Molecular dynamics, Markov chain Monte Carlo
 - Very computational expensive, especially for large molecules

Machine Learning Approaches

- Train a model to predict molecular conformations *R* given the molecular graph *G*, i.e., modeling p(*R*|*G*) (Mansimov et al. 2019, Simm and Hernandez-Lobato 2020)
- Challenges
 - Conformations are rotation and translation equivalent
 - The distribution $p(\mathbf{R}|\mathcal{G})$ is multimodal and very complex

Our Solution (Xu et al. 2020)

- A flexible generative model $p_{\theta}(\mathbf{R}|\mathcal{G})$ based on normalizing flows
 - Treating pairwise distances *d* as intermediate variables
 - First generating the distance d based G, i. e. $p_{\theta}(d|G)$
 - Generating conformations based on d and G, i.e. $p_{\theta}(\mathbf{R}|\mathbf{d}, G)$

$$p_{\theta}(\boldsymbol{R}|\mathcal{G}) = \int p(\boldsymbol{R}|\boldsymbol{d},\mathcal{G}) \cdot p_{\theta}(\boldsymbol{d}|\mathcal{G}) \,\mathrm{d}\boldsymbol{d}$$

• Further correct $p_{\theta}(\mathbf{R}|\mathcal{G})$ with an energy-based tilting term $E_{\phi}(\mathbf{R},\mathcal{G})$

$$p_{\sqrt{\varphi}}(R|G) / p_{\sqrt{R}}(R|G) \cdot \exp(-E_{\varphi}(R,G))$$

Minkai Xu*, Shitong Luo*, Yoshua Bengio, Jian Peng, Jian Tang. Learning Neural Generative Dynamics for Molecular Conformation Generation. In Submission.

Distance Geometry Generation $p_{A}(d|G)$

• Conditional Graph Continuous Flow (CGCF)

d

- Defines an invertible mapping between a base distribution and the pairwise atom distance d conditioning on the molecular graph G
- Defines the continuous dynamics of distance *d* with Neural Ordinary Differential Equations (ODEs):

$$F_{\mathcal{A}}(d(t_0), G) = d(t_0) + \begin{bmatrix} z & t_1 \\ t_0 \end{bmatrix} f_{\mathcal{A}}(d(t), t; G) dt, \quad d(t_0) \leftarrow N(0, 1) \\ \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} \\ \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} \\ \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} \\ \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} & \downarrow_{t_0} \\ \downarrow_{t_0} & \downarrow_{t_0} \\ \downarrow_{t_0} & \downarrow_{t_0} &$$

Conformation Prediction $p(\mathbf{R}|\mathbf{d}, \mathcal{G})$

• Defines the distribution of conformation *R* given the molecular graph *G* and the pairwise atom distance *d*

$$p(\boldsymbol{R}|\boldsymbol{d}, \mathcal{G}) = \frac{1}{Z} \exp\left\{-\sum_{e_{uv} \in \mathcal{E}} \alpha_{uv} \left(\|\boldsymbol{r}_u - \boldsymbol{r}_v\|_2 - d_{uv}\right)^2\right\}$$

• Trying to find the conformations R that satisfy the distance constraints

Energy-based Tilting Model

• Further correct $p_{\theta}(\mathbf{R}|\mathcal{G})$ with an energy-based tilting term $E_{\phi}(\mathbf{R},\mathcal{G})$

$$p_{\checkmark,\varphi}(R|G) / p_{\checkmark}(R|G) \cdot \exp(-E_{\varphi}(R,G))$$

- Explicitly learn an energy function $E_{\phi}(\mathbf{R}, \mathcal{G})$ with SchNet (Schütt et al. 2017)
 - Neural message passing in 3D space

Training Energy Model

- Directly training EBMs with maximum likelihood is difficult
 - Involving a slow sampling process from the model distribution (e.g. with Langevin dynamics)
- Training EBMs with negative sampling
 - Treating observed conformations as positive examples
 - Generating negative conformations through the flow-based model $p_{\theta}(\boldsymbol{R}|\mathcal{G})$

$$\mathcal{L}_{\text{nce}}(\boldsymbol{R}, \mathcal{G}; \phi) == -\mathbb{E}_{p_{\text{data}}} \left[\log \frac{1}{1 + \exp(E_{\phi}(\boldsymbol{R}, \mathcal{G}))} \right] - \mathbb{E}_{p_{\theta}} \left[\log \frac{1}{1 + \exp(-E_{\phi}(\boldsymbol{R}, \mathcal{G}))} \right]$$

The Final Sampling Process:

Examples

Graph	Conformations										
HO	**	7	~ <u>*</u> *	***	****	**}~	Å-₹	****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
N OH	and the	A.	~~~~	1 7-6	~ **	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Å.Ű	5 fel	1	~ *	
0 OH	* *	1	Å.	1	***	*** *	14	∛ ≪	** *	L.	
HO	يۇ دە	* **	Å.	پې نې		ź.	¢,	¥Č\$~		2 2 50	
HO	7		<u> </u>		<u> </u>	738	844. A	÷.	9 4 8	Ъ¢.	
	~~ ~	X	Ċ¢	X	X	\$	30. A	\$ *	5 de	~~ ~	
	\$ *\$ \$	×**	Х ^р ф	~ }{* *	\$\$*\$\$	Serves	the second s	××	***	¥, ¥	
-Q-C-5	****	****	2000 N	¥2 % .	\$	1	<u>E</u>		, 1	£**	
040	* **** *	*****	×¢¢	2.6 0	ra	A.	چې کې	۲	** * ¢**	Şird î	

Medical Knowledge Graph Construction (Ongoing)

- >7M Entities, ~300M facts
 - Disease
 - Drug
 - Phenotype
 - Gene
 - Protein
 - Side effect
- Biomedical literature

Drug Repurposing with Biomedical Knowledge Graphs (Ongoing)

- Drug repurposing: identifying effective drugs for a disease from existing approved list
- Predicting the links between diseases and drugs on biomedical knowledge graphs

Figure borrowed from Zeng et al. 2020

Summary

- Great potential of AI to drug discovery
 - Extracting evidence from a huge amount of biomedical data
- Many data in this domain are graph-structured
 - Molecules, biomedical knowledge graphs
- Great representation learning for drug discovery
 - Molecule properties prediction
 - De novo molecule design and optimization
 - Retrosynthesis prediction
 - Drug repurposing

Future Directions

- Going beyond from 2D graphs to 3D structures
- Drug Discovery with Limited Labeled Data
 - Active Learning
 - Self-supervised Learning
 - Multi-task/Transfer Learning
 - Few-shot Learning

AAAI'21 Tutorial on Artificial Intelligence for Drug Discovery

- Date: 8:30 am 11:45 am, Feb. 03, 2021
- Speakers

Jian Tang Mila-Quebec Al Institute

Fei Wang Weill Cornell Medicine

Feixiong Cheng Cleveland Clinic

Thanks!

- Current Students
 - Meng Qu
 - Zhaocheng Zhu
 - Andreea Deac
 - Louis-Pascal Xhonneux
 - Shengchao Liu
 - Chence Shi
 - Minkai Xu
- Collaborators and previous students:, Yoshua Bengio, Jian Peng, Fei Wang, Feixiong Cheng, Ming Zhang, Fanyun Sun, Hongyu Guo, Jordan Hoffmann, Vikas Verma,....

Microsoft[®] Research

SAMSUNG

References

- Fanyun Sun, Jordan Hoffman, Vikas Verma and Jian Tang. InfoGraph: Unsupervised and Semisupervised Graph-Level Representation Learning via Mutual Information Maximization. ICLR'20.
- Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation. ICLR'20.
- Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang and Jian Tang. A Graph to Graphs Framework for Retrosynthesis Prediction. ICML, 2020.
- Minkai Xu*, Shitong Luo*, Yoshua Bengio, Jian Peng, Jian Tang. Learning Neural Generative Dynamics for Molecular Conformation Generation. In Submission.
- Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy BR Hayter, Richard Vickers, Charles Roberts, Jian Tang, David Roblin, Tom L Blundell, Michael M Bronstein, Jake P Taylor-King. <u>Utilising Graph Machine Learning within Drug</u> <u>Discovery and Development.</u> arXiv:2012.05716
- Yadi Zhou, Fei Wang, Jian Tang, Ruth Nussinov, Feixiong Cheng. <u>Artificial intelligence in</u> <u>COVID-19 drug repurposing</u>. The Lancet Digital Health.

GraphAF: an Autoregressive Flow for Molecular Graph Generation

- G=(A, X), where A is the adjacency matrix, X is the atom type
- Dequantize a discrete graph G into continuous data

 $z_i^X = X_i + u, \ u \sim U[0,1)^d; \ z_{ij}^A = A_{ij} + u, \ u \sim U[0,1)^{b+1}$

• Define the conditional distributions as:

$$\begin{array}{ll} \text{Node generation:} & p(z_i^X | G_i) = \mathcal{N}(\mu_i^X, (\alpha_i^X)^2), \\ & \text{where } \mu_i^X = g_{\mu^X}(G_i), \alpha_i^X = g_{\alpha^X}(G_i), \\ \text{Edge generation:} & p(z_{ij}^A | G_i, X_i, A_{i,1:j-1}) = \mathcal{N}(\mu_{ij}^A, (\alpha_{ij}^A)^2), \ j \in \{1, 2, \ldots, i-1\}, \\ & \text{where } \mu_{ij}^A = g_{\mu^A}(G_i, X_i, A_{i,1:j-1}), \alpha_{ij}^A = g_{\alpha^A}(G_i, X_i, A_{i,1:j-1}) \\ \end{array}$$

G_i: current graph substructure, encoded with graph neural networks