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Catching up With an Evolving Landscape
One size fits all:

– Easier administration/development
– Easier usage
– Single point of truth

Modern requirements:
– OLAP, OLTP, Streams, federated data, ML, FaaS, …., mixed
– Custom & domain-specific types/operations
– Diverse requirements and priorities

2Treat heterogeneity as a first-class citizen
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Source: Forbes



Image: “Three-way tug of war” (https://www.momahler.com/ProArtistManifesto)
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Change Means Trouble

Next generation systems must adapt



Change-driven Architectures
Data & operations hint to optimal architecture
Allow operations to shape DBMS architecture to their size
Reduce uncertain, preemptive work and fixed components

4Each workload runs on its own custom DBMS

Capabilities Runtime

Composability
Modularity

Specialization
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data growth

From Data to Information Veracity

6Need timely & informed data preparation
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5. Plan execution
6. (finally!) run & get answer

Database

Preparation Kills Discovery
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Load
30%

Clean
50%

Index
17%

Cost grows with owned – not used! – data
Planning is expensive, often even wrong



Heterogeneous Data: Convert the Engine
Conservative: pre-load & convert data

– Time-consuming data adaptation to engine
– Transformation: pre-determined order wrt execution
– Wasteful loading of write-only data

Real-time: customize access paths at runtime
– Virtualize data; specialize access paths to queries+data
– On-the-fly access paths and positional caches
– Pay-as-you-go heterogeneous data accesses

8Real-time adaptation to data formats à flexibility
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Proteus: Customized Data Access

Each source as native format, generate special engine/query

Engine adapts to data
Plug-in per data source
Build auxiliary structures

Predicate
Expression Type

Collection Type

ü Reduce branches

ü Minimize function calls

ü Pipelining

Krikellas [ICDE2010], Neumann [VLDB2011]
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Overhead Generate 

Operators



Full Cleaning: A Dirty Solution
Conservative: query cleaned database copy

– Time-consuming transformation: Dirty=>Clean DB
– Analysis dependent
– Wasteful effort on unnecessary data

Real-time: Sanitize only interesting data
– Virtualized clean DB
– Query relaxation to guarantee correctness
– Clean touched data as-you-go

10Focus on cleaning useful data
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Query-Driven Data Sanitization

11Clean only useful data with probabilistic fixes
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Indexing Decisions: It’s All About Accesses
Conservative: parse before tune

– Based on workload-expectations
– Data duplication
– Coarse-grained access path selection

Real-time: on-the-fly indexing of raw data
– Virtualized (logical) partitioning & online index tuning
– Reuse raw data
– Fine-grained tuning, as-you-go

12Online partial indexing, specialized to access pattern
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Evolving Indexes

13On-the-fly virtual indexes to invest on important data

B+

Data skipping
Fine-grained access path selection
Choose what to build & when 
- Value-Existence (i.e., Bloom filters)
- Value-Position (i.e., B+ Trees)
Build / drop based on budget

...

…

attr1 attrN costs vs. gains
Should I build or not?
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Conservative: offline vs online AQP
– Tradeoff between performance and flexibility
– Preprocessing cost or reduced gains
– Static sampling user-driven tactic

Real-time: Workload-driven data summarization
– Maintain sample/sketch set specialized to workload history
– Materialize summaries based on gain estimates
– Pay-as-you-go summary creation and storage overheads

AQP: From Expectations to Adaptation

15Adapt summaries based on workload patterns
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Tuning Materialized Summaries
Window-based prediction

Estimate prospective gains vs. storage cost

Adapt window size based on quality of predictions

16Materialize summaries maximizing gain on past workload
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Bypassing Intra-Query Dependencies
Conservative: Query unnesting

– Staged query execution: waiting for unnecessary details
– Sharing prohibited across barriers
– Blocking & limited parallelism dues to dependencies

Real-time: Speculate intra-query dependencies
– Virtualize query execution by speculating and repairing
– Exposed sharing and parallelism across barrier
– Verify & repair query results as-you-go

17Expect, predict & proceed: specialize to uncertainty
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Chocking Points Reduce Parallelism

18Subquery speculation to create task-independence

Outer query

Subquery 2

Subquery 3
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Apply recursively

Task parallelism and sharing opportunities

Stable repair propagation
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Planning in Multi-Query Execution
Conservative: Opportunistic sharing

– Missed sharing opportunities, to avoid optimization time
– (Multi-) Query & statistic dependent
– Sensitive to query order, plans, correlations

Real-time: Adaptive multi-query optimization
– Specialize to running queries- & data-at-hand
– Inspect actual statistics, observed by minibatches
– Reconfigure execution for pay-as-you-go plans

19

Learn & explore using running Qs à fine granularity reopt
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Concurrent Queries: From Complexity to Shareability

20Query-interoperability-based, on-the-fly batch-reoptimization
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Hardware Acceleration: A Balancing Game
Conservative: Performance – portability tradeoff across devices

– Device specific operator implementations
– Limited or expectation-based load-balancing
– Inefficient hardware use

Real-time: Synergistic CPU-GPU execution
– Virtualize hardware & generate hardware-specific code
– Throughput-based data-flow load balancing
– Exploit Accelerator-Level Parallelism

22Use devices based on their relative performance
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Hardware Heterogeneity: Let the Data Flow
Decouple data- from control-flow
Encapsulate trait conversions into operators
Inspect flows to load-balance

23Flow inspection to load balance across heterogeneous devices
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Hardware Boundaries à Isolation Mechanisms

Conservative: Device-collocated OLAP & OLTP
– Wasted parallelism and throughput
– Static hardware preferences
– Destructive interference across workloads

Real-time: Dynamic task assignment minimizes interference
– ALP & hardware boundaries as an isolation mechanism
– Fresh-data-rate- & isolation-driven task assignment
– Pay-as-you-access-fresh-data interference 

24Align isolation requirements with hardware boundaries
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GPU Accesses Fresh Data from CPU Memory
OLTP generates fresh data

on CPU Memory

Data access protected by
concurrency control

OLAP needs to access
fresh data

25Provide snapshot isolation for OLAP w/o CC overheads
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HTAP: Chasing Freshness Locality
Conservative: Static OLAP-OLTP assignment

– Unnecessary tradeoff between interference and performance
– Pre-determined resource assignment based on workload type
– Wasteful data consolidation and synchronization

Real-time: Adaptive scheduling of HTAP workloads
– Specialize to requirements and data/freshness-rates
– Workload-based resource assignment
– Pay-as-you-go snapshot updates

26Task placement based on resource usage
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Workload Isolation & Fresh Data Throughput

27Freshness-based: from destructive to constructive interference

ETL

Isolated Elastic-ComputeHybrid-Access Colocated

Performance Isolation
Fresh Data Access Bandwidth

Fresh Data

OLAPOLTP
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Complexity of Modern Workloads
Diverse modern data problems

– IOT, OCR, ML, NLP, Medical, Mathematics etc…

DBMS catch-up for popular functionality
– Human effort and big delays
– Oblivious to out-of-DBMS workflows

Vast resource of libraries
– Authored by domain experts, used by everybody
– Loose library-to-data-sources integration and optimization

30Need for systems that can “learn” new functionality



five old friends revisited
Data variety à Operational environment variety

– Unpredictable application requirements

Data veracity à Inter-component veracity
– Heterogeneous data & variable importance

Data volume à Structural volume
– Multi-layered system architectures

Data value à Resource value
– Broader, multi-featured analytics

Data velocity à Technological velocity
– Hardware heterogeneity & volatility

31Intelligent systems to catch-up with an evolving landscape



Incorporate change into native design.
Anticipate change and react, learning from errors.

A solution is only as efficient 
as its least adaptive component.

Intelligent Real-time Systems


