
Nothing is for granted:
Making wise decisions using real-time intelligence

Anastasia Ailamaki



Catching up With an Evolving Landscape
One size fits all:

– Easier administration/development
– Easier usage
– Single point of truth

Modern requirements:
– OLAP, OLTP, Streams, federated data, ML, FaaS, …., mixed
– Custom & domain-specific types/operations
– Diverse requirements and priorities

2Treat heterogeneity as a first-class citizen

ODBMS

DSMS
Spatial
DBMS

KV-store

“Useful” time: 9%
(mining data for patterns)
Source: Forbes



Image: “Three-way tug of war” (https://www.momahler.com/ProArtistManifesto)

Hardware

Data

Workload

Change Means Trouble

Next generation systems must adapt



Change-driven Architectures
Data & operations hint to optimal architecture
Allow operations to shape DBMS architecture to their size
Reduce uncertain, preemptive work and fixed components

4Each workload runs on its own custom DBMS

Capabilities Runtime

Composability
Modularity

Specialization



Runtime specialization embraces heterogeneity

5

Data

He
te
ro
ge
ne

ou
s

Workload

Hardware

Unstandardized Inconsistencies Skewness

Uncertainty Complexity Volume

Underutilization Boundaries Interference



data growth

From Data to Information Veracity

6Need timely & informed data preparation

TXT

LOAD

LOAD

LOA
D

Clean 
Data

Tune
Database

Time

Query

predictability



5. Plan execution
6. (finally!) run & get answer

Database

Preparation Kills Discovery

QUERY

LOAD

TXT

LOAD

LOA
D

1. Load data

2. Clean 
Data

3. Tune
Database

4. Ask analytical question

$$$
$$

Load
30%

Clean
50%

Index
17%

Cost grows with owned – not used! – data
Planning is expensive, often even wrong



Heterogeneous Data: Convert the Engine
Conservative: pre-load & convert data

– Time-consuming data adaptation to engine
– Transformation: pre-determined order wrt execution
– Wasteful loading of write-only data

Real-time: customize access paths at runtime
– Virtualize data; specialize access paths to queries+data
– On-the-fly access paths and positional caches
– Pay-as-you-go heterogeneous data accesses

8Real-time adaptation to data formats à flexibility

TXT

LOAD

LOAD

LOA
D

Query

TXT

Query



CSV JSON.bin

Query

CSV JSON.bin

DBMS

Tr
an

sf
or
m

Query

Proteus: Customized Data Access

Each source as native format, generate special engine/query

Engine adapts to data
Plug-in per data source
Build auxiliary structures

Predicate
Expression Type

Collection Type

ü Reduce branches

ü Minimize function calls

ü Pipelining

Krikellas [ICDE2010], Neumann [VLDB2011]

Interpretation 
Overhead Generate 

Operators



Full Cleaning: A Dirty Solution
Conservative: query cleaned database copy

– Time-consuming transformation: Dirty=>Clean DB
– Analysis dependent
– Wasteful effort on unnecessary data

Real-time: Sanitize only interesting data
– Virtualized clean DB
– Query relaxation to guarantee correctness
– Clean touched data as-you-go

10Focus on cleaning useful data

Query

Query Result

Cleaning

Offline 
Cleaning



Query-Driven Data Sanitization

11Clean only useful data with probabilistic fixes

Denial
Constraints

Duplicate
EliminationIntegrity

Constraints

Common algebra q1

q2Offline 
Cleaning

Query Result

Cleaning



Indexing Decisions: It’s All About Accesses
Conservative: parse before tune

– Based on workload-expectations
– Data duplication
– Coarse-grained access path selection

Real-time: on-the-fly indexing of raw data
– Virtualized (logical) partitioning & online index tuning
– Reuse raw data
– Fine-grained tuning, as-you-go

12Online partial indexing, specialized to access pattern

TXT

LOAD

LOAD

LOA
D

Tune
Database

Query

TXT

Access

Tune
QueryAccess

Acce
ss



Evolving Indexes

13On-the-fly virtual indexes to invest on important data

B+

Data skipping
Fine-grained access path selection
Choose what to build & when 
- Value-Existence (i.e., Bloom filters)
- Value-Position (i.e., B+ Trees)
Build / drop based on budget

...

…

attr1 attrN costs vs. gains
Should I build or not?

Bf

Qm

TXT

Access

Tune
QueryAccess

Acce
ss



Runtime specialization embraces heterogeneity

14

Data

He
te
ro
ge
ne

ou
s

Workload

Hardware

Unstandardized Inconsistencies Skewness

Uncertainty Complexity Volume

Underutilization Boundaries Interference



Conservative: offline vs online AQP
– Tradeoff between performance and flexibility
– Preprocessing cost or reduced gains
– Static sampling user-driven tactic

Real-time: Workload-driven data summarization
– Maintain sample/sketch set specialized to workload history
– Materialize summaries based on gain estimates
– Pay-as-you-go summary creation and storage overheads

AQP: From Expectations to Adaptation

15Adapt summaries based on workload patterns

Select 
Persistent

Summaries
Query

Query

Query

Query

Refine
Summaries

Query

Query

Query

Query
Refine

Summaries



Tuning Materialized Summaries
Window-based prediction

Estimate prospective gains vs. storage cost

Adapt window size based on quality of predictions

16Materialize summaries maximizing gain on past workload

Q1 Q2 Q3 Q4 Q5 Q6

S1

S2
S2

S3
S2

S4
S4 S4 S1

S2
Summary 

warehouse S1 S2

w = 2

S4

materialize materialize use

Useful 
Summaries



Bypassing Intra-Query Dependencies
Conservative: Query unnesting

– Staged query execution: waiting for unnecessary details
– Sharing prohibited across barriers
– Blocking & limited parallelism dues to dependencies

Real-time: Speculate intra-query dependencies
– Virtualize query execution by speculating and repairing
– Exposed sharing and parallelism across barrier
– Verify & repair query results as-you-go

17Expect, predict & proceed: specialize to uncertainty

Query

Sub-query

Sub-query

Query

Sub-querySub-query
Sub-querySub-query



Chocking Points Reduce Parallelism

18Subquery speculation to create task-independence

Outer query

Subquery 2

Subquery 3

approx2

SVJoin

Δ(Q1)

Guard

Guard

SVJoin

Δ(Q2)

approx3

Apply recursively

Task parallelism and sharing opportunities

Stable repair propagation

Query

Sub-querySub-query
Sub-querySub-query



Planning in Multi-Query Execution
Conservative: Opportunistic sharing

– Missed sharing opportunities, to avoid optimization time
– (Multi-) Query & statistic dependent
– Sensitive to query order, plans, correlations

Real-time: Adaptive multi-query optimization
– Specialize to running queries- & data-at-hand
– Inspect actual statistics, observed by minibatches
– Reconfigure execution for pay-as-you-go plans

19

Learn & explore using running Qs à fine granularity reopt

Query Plan Execute

Query Plan Execute

Query Plan Execute

Query

Query

Query

Execute

Execute

Execute & 
revise plans



Concurrent Queries: From Complexity to Shareability

20Query-interoperability-based, on-the-fly batch-reoptimization

RouLette
Q1
Q2
Q3

Feedback

Plan efficiency
Execution Efficiency

Reinforcement learning
Low-overhead adaptation

Query Processing Time

Query

Query

Query

Execute

Execute

Execute & 
revise plans



Runtime specialization embraces heterogeneity

21

Data

He
te
ro
ge
ne

ou
s

Workload

Hardware

Unstandardized Inconsistencies Skewness

Uncertainty Complexity Volume

Underutilization Boundaries Interference



Hardware Acceleration: A Balancing Game
Conservative: Performance – portability tradeoff across devices

– Device specific operator implementations
– Limited or expectation-based load-balancing
– Inefficient hardware use

Real-time: Synergistic CPU-GPU execution
– Virtualize hardware & generate hardware-specific code
– Throughput-based data-flow load balancing
– Exploit Accelerator-Level Parallelism

22Use devices based on their relative performance

GPU

CPU
Query 

GPU

CPU
Query



Hardware Heterogeneity: Let the Data Flow
Decouple data- from control-flow
Encapsulate trait conversions into operators
Inspect flows to load-balance

23Flow inspection to load balance across heterogeneous devices

filter

unpack

cpu2gpu

gpu2cpu

pack

mem-move

mem-move

aggregate

router

router

unpack

aggregate

GPU

CPU
Query



Hardware Boundaries à Isolation Mechanisms

Conservative: Device-collocated OLAP & OLTP
– Wasted parallelism and throughput
– Static hardware preferences
– Destructive interference across workloads

Real-time: Dynamic task assignment minimizes interference
– ALP & hardware boundaries as an isolation mechanism
– Fresh-data-rate- & isolation-driven task assignment
– Pay-as-you-access-fresh-data interference 

24Align isolation requirements with hardware boundaries

GPU

CPU
Command

GPU

CPU
CommandSchedule



GPU Accesses Fresh Data from CPU Memory
OLTP generates fresh data

on CPU Memory

Data access protected by
concurrency control

OLAP needs to access
fresh data

25Provide snapshot isolation for OLAP w/o CC overheads

Read / Write

Storage

Fetch Fresh Data

Main 
Memory

DRAM 
NVLink

PCIe

OLTP

OLAP

GPU

CPU
CommandSchedule



HTAP: Chasing Freshness Locality
Conservative: Static OLAP-OLTP assignment

– Unnecessary tradeoff between interference and performance
– Pre-determined resource assignment based on workload type
– Wasteful data consolidation and synchronization

Real-time: Adaptive scheduling of HTAP workloads
– Specialize to requirements and data/freshness-rates
– Workload-based resource assignment
– Pay-as-you-go snapshot updates

26Task placement based on resource usage

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU



Workload Isolation & Fresh Data Throughput

27Freshness-based: from destructive to constructive interference

ETL

Isolated Elastic-ComputeHybrid-Access Colocated

Performance Isolation
Fresh Data Access Bandwidth

Fresh Data

OLAPOLTP



Runtime specialization embraces heterogeneity

28

Data

He
te
ro
ge
ne

ou
s

Workload

Hardware

Unstandardized Inconsistencies Skewness

Uncertainty Complexity Volume

Underutilization Boundaries Interference

Inspect & 
Reduce

Relax & 
Repair

Track & 
Adjust



Runtime specialization embraces heterogeneity

29Application landscape changes data processing

Data

He
te
ro
ge
ne

ou
s

Workload

Hardware

Unstandardized Inconsistencies Skewness

Uncertainty Complexity Volume

Underutilization Boundaries Interference

Queries

Workload



Complexity of Modern Workloads
Diverse modern data problems

– IOT, OCR, ML, NLP, Medical, Mathematics etc…

DBMS catch-up for popular functionality
– Human effort and big delays
– Oblivious to out-of-DBMS workflows

Vast resource of libraries
– Authored by domain experts, used by everybody
– Loose library-to-data-sources integration and optimization

30Need for systems that can “learn” new functionality



five old friends revisited
Data variety à Operational environment variety

– Unpredictable application requirements

Data veracity à Inter-component veracity
– Heterogeneous data & variable importance

Data volume à Structural volume
– Multi-layered system architectures

Data value à Resource value
– Broader, multi-featured analytics

Data velocity à Technological velocity
– Hardware heterogeneity & volatility

31Intelligent systems to catch-up with an evolving landscape



Incorporate change into native design.
Anticipate change and react, learning from errors.

A solution is only as efficient 
as its least adaptive component.

Intelligent Real-time Systems


