Nothing is for granted: Making wise decisions using real-time intelligence

Anastasia Ailamaki

ΔίΑς

Catching up With an Evolving Landscape

Modern requirements:

- OLAP, OLTP, Streams, federated data, ML, FaaS,, mixed
- Custom & domain-specific types/operations
- Diverse requirements and priorities

KV-store

Treat heterogeneity as a first-class citizen

Next generation systems must adapt

ΔίΛς

Change-driven Architectures

Data & operations hint to optimal architecture
Allow operations to shape DBMS architecture to their size
Reduce uncertain, preemptive work and fixed components

Capabilities

Composability

Modularity

Runtime

Specialization

Each workload runs on its own custom DBMS

Runtime specialization embraces heterogeneity

From Data to Information Veracity

Need timely & informed data preparation

<u>EPFL</u>

Preparation Kills Discovery

Cost grows with *owned* – not used! – data Planning is expensive, often even wrong

Heterogeneous Data: Convert the Engine

Conservative: pre-load & convert data

- Time-consuming data adaptation to engine
- Transformation: pre-determined order wrt execution
- Wasteful loading of write-only data

Real-time: customize access paths at runtime

- Virtualize data; specialize access paths to queries+data
- On-the-fly access paths and positional caches
- Pay-as-you-go heterogeneous data accesses

Real-time adaptation to data formats -> flexibility

ΔίΑς

Proteus: Customized Data Access

Each source as native format, generate special engine/query

Full Cleaning: A Dirty Solution

Conservative: query cleaned database copy

- Time-consuming transformation: Dirty=>Clean DB
- Analysis dependent
- Wasteful effort on unnecessary data

Real-time: Sanitize only interesting data

- Virtualized clean DB
- Query relaxation to guarantee correctness
- Clean touched data as-you-go

Focus on cleaning useful data

Query-Driven Data Sanitization

DIAS

Indexing Decisions: It's All About Accesses

Conservative: parse before tune

- Based on workload-expectations
- Data duplication
- Coarse-grained access path selection

Real-time: on-the-fly indexing of raw data

- Virtualized (logical) partitioning & online index tuning
- Reuse raw data
- Fine-grained tuning, as-you-go

ΔίΛς

Evolving Indexes

On-the-fly virtual indexes to invest on important data

Runtime specialization embraces heterogeneity

AQP: From Expectations to Adaptation

Conservative: offline vs online AQP

- Tradeoff between performance and flexibility
- Preprocessing cost or reduced gains
- Static sampling user-driven tactic

Real-time: Workload-driven data summarization

- Maintain sample/sketch set specialized to workload history
- Materialize summaries based on gain estimates
- Pay-as-you-go summary creation and storage overheads

ΔiAS

Tuning Materialized Summaries

Estimate prospective gains vs. storage cost

Adapt window size based on quality of predictions

Materialize summaries maximizing gain on past workload

Bypassing Intra-Query Dependencies

Conservative: Query unnesting

- Staged query execution: waiting for unnecessary details
- Sharing prohibited across barriers
- Blocking & limited parallelism dues to dependencies

Query Sub-query Sub-query

Real-time: Speculate intra-query dependencies

- Virtualize query execution by speculating and repairing
- Exposed sharing and parallelism across barrier
- Verify & repair query results as-you-go

Chocking Points Reduce Parallelism

Task parallelism and sharing opportunities

Subquery speculation to create task-independence

Planning in Multi-Query Execution

Conservative: Opportunistic sharing

- Missed sharing opportunities, to avoid optimization time
- (Multi-) Query & statistic dependent
- Sensitive to query order, plans, correlations

Real-time: Adaptive multi-query optimization

- Specialize to running queries- & data-at-hand
- Inspect actual statistics, observed by minibatches
- Reconfigure execution for pay-as-you-go plans

Learn & explore using running Qs → fine granularity reopt

<u>Aias</u>

Plan efficiency Reinforcement learning

Execution Efficiency Low-overhead adaptation

Query-interoperability-based, on-the-fly batch-reoptimization

Runtime specialization embraces heterogeneity

Hardware Acceleration: A Balancing Game

Conservative: Performance – portability tradeoff across devices

- Device specific operator implementations
- Limited or expectation-based load-balancing
- Inefficient hardware use

Real-time: Synergistic CPU-GPU execution

- Virtualize hardware & generate hardware-specific code
- Throughput-based data-flow load balancing
- Exploit Accelerator-Level Parallelism

Use devices based on their relative performance

ΔiAS .

<u>EPFL</u>

Hardware Heterogeneity: Let the Data Flow

Decouple data- from control-flow

Encapsulate trait conversions into operators

Inspect flows to load-balance

Flow inspection to load balance across heterogeneous devices

Hardware Boundaries \rightarrow **Isolation Mechanisms**

Conservative: Device-collocated OLAP & OLTP

- Wasted parallelism and throughput
- Static hardware preferences
- Destructive interference across workloads

Real-time: Dynamic task assignment minimizes interference

- ALP & hardware boundaries as an isolation mechanism
- Fresh-data-rate- & isolation-driven task assignment
- Pay-as-you-access-fresh-data interference

EPFL

GPU Accesses Fresh Data from CPU Memory

OLTP generates fresh data on CPU Memory

Data access protected by concurrency control

OLAP needs to access fresh data

HTAP: Chasing Freshness Locality

Conservative: Static OLAP-OLTP assignment

- Unnecessary tradeoff between interference and performance
- Pre-determined resource assignment based on workload type
- Wasteful data consolidation and synchronization

Real-time: Adaptive scheduling of HTAP workloads

- Specialize to requirements and data/freshness-rates
- Workload-based resource assignment
- Pay-as-you-go snapshot updates

Fresh Data Access Bandwidth

Performance Isolation

Freshness-based: from destructive to constructive interference

Runtime specialization embraces heterogeneity

Runtime specialization embraces heterogeneity

Application landscape changes data processing

EPFL

Complexity of Modern Workloads

Diverse modern data problems

- IOT, OCR, ML, NLP, Medical, Mathematics etc...

Commercial AI/ML

DBMS catch-up for popular functionality

- Human effort and big delays
- Oblivious to out-of-DBMS workflows

Augmented analytics

Vast resource of libraries

- Authored by domain experts, used by everybody
- Loose library-to-data-sources integration and optimization analytics and NLP

Combination of IoT and analytics

Need for systems that can "learn" new functionality

five old friends revisited

Data variety → Operational environment variety

Unpredictable application requirements

Data veracity → Inter-component veracity

- Heterogeneous data & variable importance

Data volume > Structural volume

Multi-layered system architectures

Data value → Resource value

Broader, multi-featured analytics

Data velocity → Technological velocity

- Hardware heterogeneity & volatility

Intelligent systems to catch-up with an evolving landscape 31

Intelligent Real-time Systems

Incorporate change into native design.

Anticipate change and react, learning from errors.

A solution is only as efficient as its least adaptive component.