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What is 
grounding?

In communication (and general 
dialogue), it means establishing mutual 
knowledge and understanding between 
parties.

Grounded dialogue: dialogue based on 
some support information or 
knowledge

e.g. Document-grounded dialogue: 
Referring to the content of a document 
during the conversation
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ELIZA (psychotherapist 
1960s)

• ELIZA: Please tell me what’s been bothering you. 

• ME: Oh, hello, ELIZA. It’s been a long time.

• ELIZA: Hi. What seems to be your problem ? 

• ME: Lately, I’ve been feeling a little depressed.

• ELIZA: And how do you feel right now ? 

• ME: I feel sad, but relieved to be writing.

• ELIZA: Of what does feeling sad remind you ? 

• ME: Well, I’m an alcoholic, and I’ve been sober for a long time, 
but I drank yesterday. And then I decided to stop drinking again. 
But still; that makes me feel sad.

• ELIZA: Is it because you are an alcoholic that you came to me ? 

• ME: I suppose that that’s one of the reasons.

• ELIZA: Can you elaborate on that ? 

• ME: I mean, it’s not the only reason, but alcoholism is a primary 
thing that has messed up my life.

• … 3



Data-driven approach (response generation)

• Mimic human dialogue 
(chitchat)

• Produce a response 
(output) for an input

• Input: sequence of 
utterances (history + 
current utterance)

• Assumption: Everything 
is in the data

Human dialogue data
U1: How are u
U2: not bad
U1: something to do?
U2: I don’t know. What 
do you suggest?

…

Encoder

Input

Decoder

Output

Training
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A typical DNN architecture – encoder-decoder
(Sordoni et al. 2016, Serban et al. 2016)
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Data-driven approach + pre-trained model

• Mimic human dialogue

• Produce a response 
(output) for an input

• Input: sequence of 
utterances (history + 
current utterance)

• Assumption: Everything 
is in the large text data 
and dialogue data

Human dialogue data

U1: How are u
U2: not bad
U1: something to do?
U2: I don’t know. What 
do you suggest?

…
…

Encoder

Input

Decoder

Output

Fine-
tuning

Large text data

Language 
model

Pre-
training
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DialoGPT (Zhang et al. ACL 2020)

courtesy: polakowo/gpt2bot@GitHub
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https://github.com/polakowo/gpt2bot


Data-driven approach (response retrieval)

• Reuse human dialogue

• Assumption: Relevant 
response exists in 
dialogue repository

• E.g. XiaoIce

Human dialogue data
U1: How are u
U2: not bad
U1: something to do?
U2: I don’t know. What 
do you suggest?

…

Retrieval

Input

Adaptation

Output
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Basic 
dialogue 
models

• Response generation

• Seq2Seq: 

• Encode the current dialogue context 
(history + current utterance)

• Generate a response by decoder

• Response retrieval

• Select the most relevant response to the 
current dialogue context

• Matching between

• History – Candidate response

• Current utterance - Candidate response

• Not grounded: do not rely explicitly on knowledge 
or information in a document
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Human dialogue may refer to external 
knowledge and information

• Often, dialogue using what we already know (digested, encoded in our mind / in a 
model)
• May miss details

• Dialogue that requires retrieving information from external resources

• When will we open Canadian borders? 

• I have a news article about this…. It says Aug. 9 for americans.

• Dialogue that relies on domain knowledge

• What is the capital of Armenia?

• I don’t know. Let me check in a knowledge base.

Oh, it’s Yerevan.
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Challenges to grounded dialogue

• How to incorporate relevant document content and knowledge into response 
generation / retrieval?

• The way to integrate it into response

• Selection of relevant information and knowledge

Human dialogue data
U1: How are u
U2: not bad
U1: something to do?
U2: I don’t know. 
What do you suggest?

…

Retrieval

Input X

Adaptation

Output YExternal Resource K

Human dialogue data
U1: How are u
U2: not bad
U1: something to do?
U2: I don’t know. 
What do you suggest?

…

Encoder

Input

Decoder

Output

Training

External resources
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RefNet (Meng et al. 
AAAI 2020)

• Reference to a background text

• A response can reuse some 
information from background

• Or generate new tokens

• RefNet uses a hybrid generation 
depending on the prob. of reference, 
generation or copying
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RefNet (Meng et al. AAAI 2020)
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GLKS (Ren et al. AAAI 2020)

• Topic transition from background document
• How should the conversation move from a topic to another

• Topic transition: X→K to select sem. entities in K
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Retrieval-based document-grounded response
• Sentences in the document are used as 

additional pieces of information (MemNet
– Ghazvininejad et al. AAAI 2018)
• Read out relevant parts and fuse with 

context

• Dually-interactive matching network (DIM -
Gu et al. EMNLP 2019)

• Context-response matching + Document-
response matching

• Cross-attention: context-aware and 
document-aware response 
representations

• Document-grounded matching network 
(DGMN - Zhao et al. IJCAI 2019)

• Create context-aware doc. rep. and 
document-aware context rep.
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Challenges in Document-grounded response 
selection

• Only part of the document content is relevant
• Selection of relevant content

• Previous work: soft selection (attention) – may still retain noise

• Hard selection

• Dialogue context (history + current utterance) 
• Concatenate utterances or using RNN to build a representation

• However, they have variable importance: More recent utterances are more important

• Using a decay function
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Document-grounded: selection of grounds
(Zhu et al. ECIR 2021)

• R1: Not related to the context

• R2: Already said

• R3: correct: related to recent 
utterance and grounded in document
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CSN – Content selection network
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Details of CSN
• Sentence encoding

• Document sentence selection

• Document token selection (global)

matching aggregation Filetering & Scoring

• Fusion with decay (on recency of utterances in context)

Max-pooling
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Details of CSN
• Matching with response

• Context-response and document-response

• Matching with self-attention representation

• Cross-attention (context-aware response rep., document-aware response rep.)

• Flatten and aggregation

• Output
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Experiments

• Task: retrieve the correct 
response from 1:19 
positive:negative mixture

Personal profile as document Movie wiki as document
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Effect of document content selection and 
dialogue history decaying

No selection, 
only weighting

No decay Only last utteranceNo document 
grounding

22



Knowledge-grounded dialogue

U1: what do you want to do?
U2: just stay home
…
Ut: how to make a cake?

Decoder

Knowledge

Do you have an oven?

selection

Encoding

fusion

Dialogue context

or triples
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Knowledge as a graph or as a set of triples



Knowledge-grounded 
dialogue - approaches

• Knowledge fusion (Liu et al. ACL 2018)

• Retrieve pieces of knowledge 
corresponding to the entities in context

• Fusion in decoder: generate a token from 
common vocabulary or knowledge

• Store knowledge in a memory 

• read-out using context as query
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Key issues in knowledge-grounded dialogue

• How to fuse a piece of knowledge into response?
• Gating, …

• What pieces of knowledge are relevant (to ground the response)?
• Selection by soft matching/weighting (attention), or entity

• Usually trained implicitly (end-to-end)

→ Difficult to know if knowledge has been selected correctly
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Proactive knowledge-grounded dialogue
(Zhu et al. SIGIR 2021)

• Dialogue grounded in domain knowledge (movie domain)

• Goal-driven dialogue: lead conversation to some goal
• Goal = a set of entities to mention (Wu et al. 2019)

• Task: Select the right candidate response 
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Knowledge-
grounded proactive 
conversation

• Movie domain knowledge

• The chatbot should lead 
the conversation to 
discuss about some 
entities (movie, actor, …)
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Desired conversation
(DuConv)
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General conv.

Leading to the 
first goal

Leading to the 
second goal



KPN – Knowledge Prediction Network

• Explicit model for knowledge selection
• Previous work: implicit selection

• Does not provide clear signal to knowledge selection

• Wrong response can be due to wrong knowledge selection or wrong response selection

• Training signal: Knowledge used in gold responses

• Goal tracking: what goal to achieve next?

• Interactive matching with response

• Context-response

• Goal-response

• Knowledge-response

• Multi-task learning: knowledge selection + response selection
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KPN architecture

• What 
knowledge is
relevant?

• What goal to
achieve?

• Context and
goal encoding
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Some details
• Goal tracking

• Goal-context matching

• Degree of satisfaction 

• Remaining goal 

• Explicit knowledge prediction
• Similarity to context and to goal

• Prediction probability 

• Prediction loss 

• Knowledge labeling: ki is used (label 1) if its object appears in gold response
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Some details
• Response selection

• Word-level matching

• Setence-level matching …

• Concatenation
• CNN and max-pooling

• Scoring

• Final score

• Training
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Experiments (1:9 mixture to selection)

Goal-oriented 
Dialogue on 
movies

Conversational 
recommendation 
on food, movie, …

DuRetrieval: - BERT-based context and response rep.
- Goal as additional knowledge 
- Selection by attention with context 

MemNet, PostKS, NKD: Only knowledge weighting
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Effect of knowledge 
selection and goal

• Knowledge is useful

• Goal is useful (less than 
knowledge)

• Using goal as a piece of 
knowledge does not 
perform well
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Grounded answer in Open-domain QA: 

• Open domain QA: find answer from many texts

35

Retriever: retrieve a set 
of texts (documents/ 
paragraphs/sentences) 
for a question

Reader: Machine 
reading comprehension 
(MRC) to find an answer 
from the selected 
documents

Key issue: Retriever and Reader disconnected



Illustration Example

• Ranking by retriever: P2 > P4 > P1 > P3
• Some of the passages contain query words, but do not contain the answer 

(P1) or do not support the answer (P2)
• Idea: Select passages that are relevant and may contain the answer
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Adding an answer-oriented passage selector

• Passage reranking: Relevance + Containing possible answer 
(lightweight reader)
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Retriever: retrieve a set 
of texts (documents/ 
paragraphs/sentences) 
for a question

Reader: Machine 
reading comprehension 
to find an answer from 
the selected documents

Ranker:
select/rerank
passages 
according to 
relevance + 
possible answer



Training of Ranker with noisy data

• Available data: Question-answer pairs

• Assumption in previous work: a passage containing the answer is a 
good passage

• A good passage is the one that contains the answer and a support to 
the answer (relevance)
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GAN-based 
training

• Adversarial training: Try to separate good 
and bad examples

• General GAN: 
• Generator – learns the distribution of 

true data
• Discriminator – tries to separate true 

and fake data

• Extended GAN framework
• Generator
• 2 discriminators: relevant and contain 

answer?
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Some formulas

• Overall objective

• Generator: 

• Rank discriminator (relevance):

• Answer discriminator: 

• Regularizer: 
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Some more formulas for losses

• Rank discriminator:

• Answer discriminator:

• Generator:  
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Training

• Document and question encoding: BiLSTM + self-attention

• Score functions in discriminators: 

• Score by generator:

• REINFORCE algorithm for training 
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Retriever and Reader

• Retriever: BM25

• Our ranker

• Reader: A reader based on 12-layer BERT
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Some experimental results

• Test collections

• Reranking (part) Final answer 
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Example
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How does reranking helps in overall 
efficiency?
• Only a few reranked passages 

are sufficient

• Lightweight ranker: a fraction of 
retrieval and machine reading 
time
• Retriever: 3.3 ms

• Ranker: 0.5 ms

• Reader: 57.3 ms
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Conclusions

• Grounded dialogue (and QA) is an important problem
• Key questions:

• How to select a relevant piece of knowledge / document content?
• How to incorporate it into response generation / selection?
• How to ground an answer in QA?

• In this talk
• Retrieval-based dialogue grounded in document / knowledge
• Finding grounding passages for QA

• Other interesting questions not covered
• Grounded Generation-based dialogue
• Incorporating pre-trained models
• More types of grounding: Emotion, …
• Using GNN
• Explicit reasoning process (symbolic + neural)
• How to evaluate a dialogue system?

47


