## Toward Grounded Dialogue

Jian-Yun Nie University of Montreal RALI lab: http://rali.iro.umontreal.ca/rali/ nie@iro.umontreal.ca

# What is grounding?

In communication (and general dialogue), it means establishing mutual knowledge and understanding between parties.

*Grounded dialogue*: dialogue based on some support information or knowledge

e.g. Document-grounded dialogue: Referring to the content of a document during the conversation

## ELIZI

## ELIZA (psychotherapist 1960s)

- ELIZA: Please tell me what's been bothering you.
- ME: Oh, hello, ELIZA. It's been a long time.
- ELIZA: Hi. What seems to be your problem ?
- ME: Lately, I've been feeling a little depressed.
- ELIZA: And how do you feel right now ?
- ME: I feel sad, but relieved to be writing.
- ELIZA: Of what does feeling sad remind you ?
- ME: Well, I'm an alcoholic, and I've been sober for a long time, but I drank yesterday. And then I decided to stop drinking again. But still; that makes me feel sad.
- ELIZA: Is it because you are an alcoholic that you came to me?
- ME: I suppose that that's one of the reasons.
- ELIZA: Can you elaborate on that ?
- ME: I mean, it's not the only reason, but alcoholism is a primary thing that has messed up my life.

## Data-driven approach (response generation)



- Mimic human dialogue (chitchat)
- Produce a response (output) for an input
- Input: sequence of utterances (history + current utterance)
- Assumption: Everything is in the data

## A typical DNN architecture – encoder-decoder (Sordoni et al. 2016, Serban et al. 2016)



## Data-driven approach + pre-trained model



- Mimic human dialogue
- Produce a response (output) for an input
- Input: sequence of utterances (history + current utterance)
- Assumption: Everything is in the large text data and dialogue data



## Data-driven approach (response retrieval)



- Reuse human dialogue
- Assumption: Relevant response exists in dialogue repository

#### • E.g. Xiaolce

Basic dialogue models

#### Response generation

- Seq2Seq:
  - Encode the current dialogue context (history + current utterance)
  - Generate a response by decoder

#### • Response retrieval

- Select the most relevant response to the current dialogue context
- Matching between
  - History Candidate response
  - Current utterance Candidate response
- **Not grounded:** do not rely explicitly on knowledge or information in a document

## Human dialogue may refer to external knowledge and information

- Often, dialogue using what we already know (digested, encoded in our mind / in a model)
  - May miss details
- Dialogue that requires retrieving information from external resources
  - When will we open Canadian borders?
  - I have a **news article** about this.... It says Aug. 9 for americans.
- Dialogue that relies on domain knowledge
  - What is the capital of Armenia?
  - I don't know. Let me check in a knowledge base.
    - Oh, it's Yerevan.

## Challenges to grounded dialogue $p_{\theta}(Y|X,K)$



- How to incorporate relevant document content and knowledge into response generation / retrieval?
  - The way to integrate it into response
  - Selection of relevant information and knowledge

## RefNet (Meng et al. AAAI 2020)

- Reference to a background text
  - A response can reuse some information from background
  - Or generate new tokens
- RefNet uses a hybrid generation depending on the prob. of *reference*, *generation or copying*

#### Semantic Units Background

box office \$ 110,000,082 awards bmi film & tv awards 2004 james I. venable <u>mtv movie + tv awards 2004 best cameo</u> taglines reload for a third shot great trilogies come in threes . this time it 's personal. there are similar movies : <u>scary movie 4</u> ...

Generated Content

#### Conversation

Human 1 : was it worth money ?

Human 2 : cheesy and trashy. i bet it didn't win any awards ?

Human 1 :

(S2SA) i think it made \$ [UNK]

(GTTP) you should check out scary movie , 4

(QANet) mtv movie + tv awards 2004 best cameo

(Golden) you are wrong . mtv movie + tv awards 2004 best cameo

Figure 1: Background Based Conversation (BBC).

### RefNet (Meng et al. AAAI 2020)



Figure 2: Overview of RefNet.

### GLKS (Ren et al. AAAI 2020)

- Topic transition from background document
  - How should the conversation move from a topic to another
  - Topic transition:  $X \rightarrow K$  to select sem. entities in K



Figure 2: Overview of Global-to-Local Knowledge Selection (GLKS).

### Retrieval-based document-grounded response

- Sentences in the document are used as additional pieces of information (MemNet
  - Ghazvininejad et al. AAAI 2018)
    - Read out relevant parts and fuse with context
- Dually-interactive matching network (DIM Gu et al. EMNLP 2019)
  - Context-response matching + Documentresponse matching
  - Cross-attention: context-aware and document-aware response representations



- Document-grounded matching network (DGMN - Zhao et al. IJCAI 2019)
  - Create context-aware doc. rep. and document-aware context rep.



## Challenges in Document-grounded response selection

- Only part of the document content is relevant
  - Selection of relevant content
  - Previous work: soft selection (attention) may still retain noise
  - Hard selection
- Dialogue context (history + current utterance)
  - Concatenate utterances or using RNN to build a representation
  - However, they have variable importance: More recent utterances are more important
  - Using a decay function

## Document-grounded: selection of grounds (Zhu et al. ECIR 2021)

- R1: Not related to the context
- R2: Already said
- R3: correct: related to recent utterance and grounded in document

|                   | Document                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                                                                                     |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Name              | The inception                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Year                                         | 2009                                                                                                |  |  |  |  |  |  |
| Director          | Christopher Nolan                                                                                                                                                                                                                                                                                                                                                                                                                                              | Genre                                        | Scientific                                                                                          |  |  |  |  |  |  |
| Cast              | <u>Leonardo DiCaprio as Dom Cobb</u> , a professiona<br>infiltrating their dreams.<br>Tom Hardy as Eames, a sharp-tongued associat                                                                                                                                                                                                                                                                                                                             | I thief who s<br>e of Cobb. ··               | pecializes in conning secrets from his victims by                                                   |  |  |  |  |  |  |
| Critical<br>Resp. | Response DiCaprio, who has never been better appeal even to non-scifi fans. The movie is a me                                                                                                                                                                                                                                                                                                                                                                  | as the tortur<br>taphor for <mark>t</mark> h | ed hero, draws you in with a love <u>story that will</u><br>le power of delusional hype for itself. |  |  |  |  |  |  |
| Intro.            | Dominick Cobb and Arthur are <u>extractors, who perform corporate espionage using an experimental military</u><br><u>technology to infiltrate the subconscious of their targets</u> and extract valuable information through a shared<br>dream world. Their latest target, Japanese businessman Saito, reveals that he arranged the mission himself to<br>test Cobb for a seemingly impossible job: planting an idea in a person's subconscious, or inception. |                                              |                                                                                                     |  |  |  |  |  |  |
| Rating            | Rotten Tomatoes: 86% and average: 8.1/10; IME                                                                                                                                                                                                                                                                                                                                                                                                                  | )B: 8.8/10                                   |                                                                                                     |  |  |  |  |  |  |
|                   | Conv                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ersation                                     |                                                                                                     |  |  |  |  |  |  |
| U1                | Have you seen the inception?                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |                                                                                                     |  |  |  |  |  |  |
| U2                | No, I have not but have heard of it. What is it abo                                                                                                                                                                                                                                                                                                                                                                                                            | out?                                         |                                                                                                     |  |  |  |  |  |  |
| U3                | It's about extractors that perform experiments their targets.                                                                                                                                                                                                                                                                                                                                                                                                  | using milit                                  | ary technology on people to retrieve info about                                                     |  |  |  |  |  |  |
| U4                | Sounds interesting. Do you know which actors a                                                                                                                                                                                                                                                                                                                                                                                                                 | re in it?                                    |                                                                                                     |  |  |  |  |  |  |
| U5                | I haven't watched it either or seen a preview. But main character. He plays as Don Cobb.                                                                                                                                                                                                                                                                                                                                                                       | t it's <mark>scifi</mark> so i               | it might be good. Ugh Leonardo DiCaprio is the                                                      |  |  |  |  |  |  |
| U6                | I'm not a big scifi fan but there are a few movies                                                                                                                                                                                                                                                                                                                                                                                                             | I still enjoy i                              | n that genre. Is it a <u>long movie</u> ?                                                           |  |  |  |  |  |  |
| R1                | Many <u>long shots</u> are used to show the beautiful s<br>to non-scifi fans!                                                                                                                                                                                                                                                                                                                                                                                  | scene. Besic                                 | les, it is really a good story that will appeal even                                                |  |  |  |  |  |  |
| R2                | Well, not really. The extractors come out with th                                                                                                                                                                                                                                                                                                                                                                                                              | e military te                                | echnology and infiltrate the subconscious.                                                          |  |  |  |  |  |  |
| R3 🗸              | Doesn't say how long it is. The Rotten Tomatoe                                                                                                                                                                                                                                                                                                                                                                                                                 | s score is 80                                | <b>5%.</b> <u>17</u>                                                                                |  |  |  |  |  |  |

### CSN – Content selection network



Fig. 2: The structure of CSN.

## Details of CSN

Sentence encoding

 $\mathbf{u}_i = \operatorname{BiLSTM}(\mathbf{E}^{u_i}), \, \mathbf{s}_j = \operatorname{BiLSTM}(\mathbf{E}^{s_j}), \, \mathbf{r} = \operatorname{BiLSTM}(\mathbf{E}^r)$ 

Document sentence selection

 $\mathbf{A} = \cos(\bar{\mathbf{C}}, \bar{\mathbf{s}}_j) \qquad S = f(A_1, A_2, \cdots, A_n) \qquad S' = S \times (\sigma(S) \ge \gamma), \quad \mathbf{s}'_j = S' \times \mathbf{s}_j,$ 

- Document token selection (global)  $\mathbf{B} = \mathbf{v}^{\top} \tanh(\mathbf{s}_{j}^{\top} \mathbf{W}_{1} \mathbf{C} + \mathbf{b}_{1}) \quad \text{Max-pooling} \quad \mathbf{S} = f(\hat{\mathbf{B}}_{1}, \hat{\mathbf{B}}_{2}, \cdots, \hat{\mathbf{B}}_{n}) \quad \mathbf{S}' = \mathbf{S} \odot (\sigma(\mathbf{S}) \ge \gamma), \quad \mathbf{s}_{j}' = \mathbf{S}' \odot \mathbf{s}_{j}$  *matching aggregation Filetering & Scoring*
- Fusion with decay (on recency of utterances in context)

 $A_i = A_i * \eta^{n-i}$ , (sentence-level)  $\hat{\mathbf{B}}_i = \hat{\mathbf{B}}_i * \eta^{n-i}$ . (word-level)

## Details of CSN

- Matching with response
  - Context-response and document-response

 $\mathbf{M}_1^{cr} = \mathbf{C}\mathbf{H}_1\mathbf{r}^\top \oplus \cos(\mathbf{C}, \mathbf{r}), \qquad \mathbf{M}_1^{dr} = \mathbf{D}\mathbf{H}_1\mathbf{r}^\top \oplus \cos(\mathbf{D}, \mathbf{r}),$ 

• Matching with self-attention representation

 $\mathbf{M}_{2}^{cr} = \hat{\mathbf{C}}\mathbf{H}_{2}\hat{\mathbf{r}}^{\top} \oplus \cos(\hat{\mathbf{C}}, \hat{\mathbf{r}}), \qquad \mathbf{M}_{2}^{dr} = \hat{\mathbf{D}}\mathbf{H}_{2}\hat{\mathbf{r}}^{\top} \oplus \cos(\hat{\mathbf{D}}, \hat{\mathbf{r}})$ 

• Cross-attention (context-aware response rep., document-aware response rep.)

$$\begin{split} \tilde{\mathbf{C}} &= f_{\mathrm{ATT}}(\mathbf{C}, \mathbf{r}, \mathbf{r}), & \tilde{\mathbf{r}}^c = f_{\mathrm{ATT}}(\mathbf{r}, \mathbf{C}, \mathbf{C}), \\ \tilde{\mathbf{D}} &= f_{\mathrm{ATT}}(\mathbf{D}, \mathbf{r}, \mathbf{r}), & \tilde{\mathbf{r}}^d = f_{\mathrm{ATT}}(\mathbf{r}, \mathbf{D}, \mathbf{D}). \\ \mathbf{M}_3^{cr} &= \tilde{\mathbf{C}} \mathbf{H}_3 \tilde{\mathbf{r}}^{c\top} \oplus \cos(\tilde{\mathbf{C}}, \tilde{\mathbf{r}}^c), & \mathbf{M}_3^{dr} = \tilde{\mathbf{D}} \mathbf{H}_3 \tilde{\mathbf{r}}^{d\top} \oplus \cos(\tilde{\mathbf{D}}, \tilde{\mathbf{r}}^d) \end{split}$$

• Flatten and aggregation

 $\mathbf{h}_1 = \mathrm{LSTM}(\mathbf{v}^{cr}), \quad \mathbf{h}_2 = \mathrm{LSTM}(\mathbf{v}^{dr})$ 

• Output

 $g(c, d, r) = \sigma(\mathrm{MLP}(\mathbf{h}_1 \oplus \mathbf{h}_2))$ 

| Experiments                                                           |                                   | Table 1: Experimental results on all datasets. |                        |                        |                        |                        |                                                     |                        |                                           |                      |
|-----------------------------------------------------------------------|-----------------------------------|------------------------------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------------------------------------|------------------------|-------------------------------------------|----------------------|
|                                                                       |                                   | Perso                                          | naChat                 | -Origina               | l Perso                | naChat                 | -Revised                                            | $\mathbf{C}$           | MUDe                                      | ьG                   |
|                                                                       |                                   | <b>R@1</b>                                     | <b>R@2</b>             | <b>R@5</b>             | <b>R@1</b>             | <b>R@2</b>             | R@5                                                 | <b>R@1</b>             | <b>R@2</b>                                | <b>R@5</b>           |
| <ul> <li>Task: retrieve the correct<br/>response from 1:19</li> </ul> | Starspace<br>Profile              | $\begin{array}{c} 49.1 \\ 50.9 \end{array}$    |                        | $76.5 \\ 75.7$         | $32.2 \\ 35.4$         | $48.3 \\ 48.3$         | $66.7 \\ 67.5$                                      | 50.7 $51.6$            | $\begin{array}{c} 64.5\\ 65.8\end{array}$ | 80.3<br>81.4         |
| positive:negative mixture                                             | KV Profile<br>Transformer<br>DGMN | 51.1<br>54.2<br>67.6                           | $61.8 \\ 68.3 \\ 81.3$ | $77.4 \\ 83.8 \\ 93.3$ | $35.1 \\ 42.1 \\ 56.7$ | $45.7 \\ 56.5 \\ 73.0$ | $\begin{array}{c} 66.3 \\ 75.0 \\ 89.0 \end{array}$ | $56.1 \\ 60.3 \\ 65.6$ | $69.9 \\ 74.4 \\ 78.3$                    | 82.4<br>87.4<br>91.2 |
| Soft selection                                                        | DIM                               | 75.5                                           | 87.5                   | 96.5                   | 68.3                   | 82.7                   | 94.4                                                | 59.6                   | 74.4                                      | 89.6                 |
|                                                                       | CSN-sent<br>CSN-word              | 77.5<br><b>78.1</b>                            | 88.8<br><b>89.0</b>    | 96.8<br><b>97.1</b>    | 70.1<br><b>71.3</b>    | 83.4<br><b>84.2</b>    | 95.1<br><b>95.5</b>                                 | <b>70.1</b> 69.8       | 82.5<br><b>82.7</b>                       | <b>94.3</b><br>94.0  |

Personal profile as document Movie wiki as document

## Effect of document content selection and dialogue history decaying





## Knowledge-grounded dialogue

Knowledge as a graph or as a set of triples



### Knowledge-grounded dialogue - approaches



- Store knowledge in a memory
  - read-out using context as query



- $X_1$ : Who is the director of the <u>Titanic</u>?
- $Y_1$ : <u>James Cameron</u>.
- $X_2$ : Is there any film like it?
- $Y_2$ : Poseidon, a classic marine film.
- Knowledge fusion (Liu et al. ACL 2018)
  - Retrieve pieces of knowledge corresponding to the entities in context
  - Fusion in decoder: generate a token from common vocabulary or knowledge

## Key issues in knowledge-grounded dialogue

- How to fuse a piece of knowledge into response?
  - Gating, ...
- What pieces of knowledge are relevant (to ground the response)?
  - Selection by soft matching/weighting (attention), or entity
  - Usually trained implicitly (end-to-end)
  - $\rightarrow$  Difficult to know if knowledge has been selected correctly

## Proactive knowledge-grounded dialogue (Zhu et al. SIGIR 2021)

- Dialogue grounded in domain knowledge (movie domain)
- Goal-driven dialogue: lead conversation to some goal
  - Goal = a set of entities to mention (Wu et al. 2019)
- Task: Select the right candidate response



#### Knowledgegrounded proactive conversation

- Movie domain knowledge
- The chatbot should lead the conversation to discuss about some entities (movie, actor, ...)



## Desired conversation (DuConv)

Goal

START  $\rightarrow$  McDull: Rise of the Rice Cooker  $\rightarrow$  Bo Peng



(8) User I will know more about him later. (那我有时间去了解一下。)

## KPN – Knowledge Prediction Network

#### Explicit model for knowledge selection

- Previous work: implicit selection
  - Does not provide clear signal to knowledge selection
  - Wrong response can be due to wrong knowledge selection or wrong response selection
- Training signal: Knowledge used in gold responses

#### Goal tracking: what goal to achieve next?

- Interactive matching with response
  - Context-response
  - Goal-response
  - Knowledge-response
- Multi-task learning: knowledge selection + response selection

## KPN architecture

 What knowledge is relevant?

• What goal to achieve?

 Context and goal encoding



## Some details

- Goal tracking
  - Goal-context matching
  - Degree of satisfaction
  - Remaining goal

$$\mathbf{m}_{ij} = \cos(\mathbf{e}_i^g, \mathbf{e}_j^u).$$
  
$$v_i = \text{ReLU}(\text{Maxpooling}(\mathbf{m}_{i,:}))$$
  
$$\mathbf{v}' = \mathbf{1} - \mathbf{v} \qquad \mathbf{e}^{g'} = \mathbf{v}' \cdot \mathbf{e}^g$$

- Explicit knowledge prediction
  - Similarity to context and to goal
  - Prediction probability
  - Prediction loss

$$s_{g'}^{k_j} = \cos(\bar{\mathbf{e}}^{g'}, \bar{\mathbf{e}}^{k_j}), \quad s_i^{k_j} = \cos(\bar{\mathbf{e}}^{u_i}, \bar{\mathbf{e}}^{k_j}),$$
  

$$s_{j}^{k_j} = \sigma \left( \text{MLP}([s_0^{k_j}; s_{L-m+1}^{k_j}; \cdots; s_L^{k_j}]) \right),$$
  

$$\mathbf{e}^{k'_j} = s_j^{k_j} \mathbf{e}^{k_j},$$
  

$$\mathcal{L}_{kp} = -\frac{1}{|\mathcal{D}|} \sum \left( y_{k_j} \log s_j^{k_j} + (1 - y_{k_j}) \log(1 - s_j^{k_j}) \right)$$

• Knowledge labeling: k<sub>i</sub> is used (label 1) if its *object* appears in gold response

## Some details

- Response selection
  - Word-level matching
  - Setence-level matching

- Concatenation
- CNN and max-pooling
- Scoring

$$\mathbf{m}_{1}^{u_{i}} = [\mathbf{e}^{u_{i}} \mathbf{A}_{1} \mathbf{e}^{r}; \cos(\mathbf{e}^{u_{i}}, \mathbf{e}^{r})],$$
  

$$\mathbf{m}_{1}^{k_{j}} = [\mathbf{e}^{k_{j}'} \mathbf{A}_{1} \mathbf{e}^{r}; \cos(\mathbf{e}^{k_{j}'}, \mathbf{e}^{r})],$$
  

$$\mathbf{u}_{i} = \mathbf{LSTM}(\mathbf{e}^{u_{i}}), \dots$$
  

$$\mathbf{m}_{2}^{u_{i}} = [\mathbf{u}_{i} \mathbf{A}_{2} \mathbf{r}; \cos(\mathbf{u}_{i}, \mathbf{r})],$$
  

$$\mathbf{m}_{2}^{k_{j}} = [\mathbf{k}_{j} \mathbf{A}_{2} \mathbf{r}; \cos(\mathbf{k}_{j}, \mathbf{r})],$$

$$\begin{split} \mathbf{m}^{u_i} &= [\mathbf{m}_1^{u_i}; \mathbf{m}_2^{u_i}], \qquad \mathbf{m}^{k_j} = [\mathbf{m}_1^{k_j}; \mathbf{m}_2^{k_j}]. \\ \mathbf{v}^u &= [\mathbf{v}^{u_1}, \cdots, \mathbf{v}^{u_L}]; \quad \mathbf{v}^k = [\mathbf{v}^{k_1}, \cdots, \mathbf{v}^{k_M}]. \\ \mathbf{h}_1 &= \mathrm{LSTM}(\mathbf{v}^u), \qquad \alpha_i = \mathrm{ReLU}(\mathrm{MLP}(\mathbf{v}_i^k)) \qquad \mathbf{g} = \mathrm{LSTM}(\mathbf{e}^{g'}), \\ s(c, r) &= \mathrm{MLP}(\mathbf{h}_1). \qquad \mathbf{h}_2 = \sum_{i=1}^{k_M} \frac{e^{\alpha_i}}{\sum_{j=1}^{k_M} e^{\alpha_j}} \mathbf{v}_i^k, \qquad s(g, r) = \mathrm{MLP}(\mathbf{h}_3). \\ s(k, r) &= \mathrm{MLP}(\mathbf{h}_2). \\ \hat{y} &= \left(s(c, r) + s(k, r) + s(g, r)\right)/3. \end{split}$$

Final score

• Training 
$$\mathcal{L} = \lambda \mathcal{L}_{kp} + \mathcal{L}_{rs},$$

## Experiments (1:9 mixture to selection)

|              | Hits@1 | Hits@3        | MRR   | BLEU1 | BLEU2  | KLG. P | KLG. R | KLG. F1 | KLG. Acc. | Goal Acc. |                |
|--------------|--------|---------------|-------|-------|--------|--------|--------|---------|-----------|-----------|----------------|
|              |        |               |       |       | DuCon  | V      |        |         |           |           |                |
| Ground-truth | -      | -             | -     | 1.00  | 1.00   | 38.24  | 9.20   | 14.83   | 100.00    | 100.00    | Goal-oriented  |
| DuRetrieval  | 50.12  | 75.68         | 63.13 | 0.47  | 0.32   | 30.11  | 7.24   | 11.68   | 53.64     | 58.90     |                |
| KPN          | 66.94  | 87.52         | 78.30 | 0.56  | 0.42   | 33.45  | 8.05   | 12.97   | 57.82     | 77.58     | Dialogue on    |
| + MemNet     | 52.54  | 78.70         | 67.90 | 0.50  | 0.34   | 29.24  | 7.03   | 11.34   | 50.90     | 72.36     | movies         |
| + PostKS     | 39.98  | 65.70         | 57.09 | 0.48  | 0.33   | 28.55  | 6.87   | 11.07   | 50.42     | 69.44     |                |
| + NKD        | 56.42  | 81.54         | 70.77 | 0.50  | 0.35   | 29.40  | 7.07   | 11.40   | 52.94     | 74.62     |                |
|              |        |               |       |       | DuRecD | ial    |        |         |           |           |                |
| Ground-truth | -      | -             | -     | 1.0   | 1.0    | 52.64  | 3.76   | 7.02    | 100.00    | 100.00    |                |
| DuRetrieval  | 77.38  | 89.02         | 84.47 | 0.46  | 0.39   | 43.42  | 3.10   | 5.79    | 94.90     | 78.34     | Conversational |
| KPN          | 91.50  | <b>98.8</b> 6 | 95.18 | 0.61  | 0.51   | 52.55  | 3.76   | 7.01    | 95.35     | 84.96     | recommendation |
| + MemNet     | 75.34  | 93.92         | 85.00 | 0.51  | 0.39   | 41.04  | 2.93   | 5.48    | 94.32     | 82.58     | on food movie  |
| + PostKS     | 82.45  | 96.60         | 89.58 | 0.53  | 0.41   | 43.70  | 3.12   | 5.83    | 94.90     | 83.12     |                |
| + NKD        | 82.74  | 97.03         | 89.96 | 0.53  | 0.41   | 42.87  | 3.07   | 5.72    | 94.81     | 83.93     |                |

- **DuRetrieval:** BERT-based context and response rep.
  - Goal as additional knowledge
  - Selection by attention with context

**MemNet, PostKS, NKD**: Only knowledge weighting

| Effect of knowledge |
|---------------------|
| selection and goal  |

- Knowledge is useful
- Goal is useful (less than knowledge)
- Using goal as a piece of knowledge does not perform well

|           | KPN   | <i>w/o</i> K. | <i>w/o</i> G. | G. as K. |
|-----------|-------|---------------|---------------|----------|
| Hits@1    | 66.94 | 38.28         | 62.32         | 61.94    |
| Hits@3    | 87.52 | 32.88         | 85.14         | 84.56    |
| MRR       | 78.30 | 55.83         | 75.20         | 74.90    |
| BLEU1     | 0.56  | 0.48          | 0.53          | 0.53     |
| BLEU2     | 0.42  | 0.32          | 0.39          | 0.39     |
| KLG. P    | 33.45 | 28.99         | 33.07         | 32.21    |
| KLG. R    | 8.05  | 6.97          | 7.95          | 7.75     |
| KLG. F1   | 12.97 | 11.24         | 12.82         | 12.49    |
| KLG. Acc. | 57.82 | 48.80         | 55.52         | 56.22    |
| Goal Acc. | 77.58 | 67.88         | 74.42         | 74.70    |

Table 2: Ablation test for KPN on DuConv dataset. "*w/o* G." means the goal is not used. "G. as K." means using the goal as a knowledge triplet.

### Grounded answer in Open-domain QA:

• Open domain QA: find answer from many texts







**Retriever:** retrieve a set of texts (documents/ paragraphs/sentences) for a question **Reader:** Machine reading comprehension (MRC) to find an answer from the selected documents

Key issue: Retriever and Reader disconnected

## Illustration Example

|              | Question:      |   | ion:   | What <u>Russian emigre</u> to the <u>U.S.</u> is <u>credited</u> with <u>inventing</u> the <u>helicopter</u> ?              |
|--------------|----------------|---|--------|-----------------------------------------------------------------------------------------------------------------------------|
|              | Ground Truth:  |   | Truth: | Igor                                                                                                                        |
|              | r a            |   | a      | Passages                                                                                                                    |
|              | D.             | 1 | 0      | Wright brothers: Orville and Wilbur Wright, were the two <u>Americans</u> who are <u>credited</u> with <u>inventing</u> and |
| X            | r 1            |   | 0      | building the world's <u>first</u> successful <u>airplane</u> .                                                              |
|              | D              | 1 | 1      | The fellow Russian emigre, Igor Ivanovich Sikorsky, was an American aviation pioneer in both                                |
| <b>,</b>     | r <sub>2</sub> |   |        | 1                                                                                                                           |
|              | P <sub>3</sub> | 0 | 1      | <i>Igor</i> Ivanovich Sikorsky was an orthodox chiristian.                                                                  |
|              | D.             | 1 | 1      | His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sikorsky's <u>aircraft</u> company,      |
| $\mathbf{V}$ | <b>r</b> 4     |   | 1      | where <b>Igor</b> developed the first helicopter and the first passenger airplane.                                          |

- Ranking by retriever: P2 > P4 > P1 > P3
- Some of the passages contain query words, but do not contain the answer (P1) or do not support the answer (P2)
- Idea: Select passages that are relevant and may contain the answer

## Adding an answer-oriented passage selector

 Passage reranking: Relevance + Containing possible answer (lightweight reader)

=\*



**Retriever:** retrieve a set of texts (documents/ paragraphs/sentences) for a question

Ranker: select/rerank passages according to relevance + possible answer **Reader:** Machine reading comprehension to find an answer from the selected documents

## Training of Ranker with noisy data

- Available data: Question-answer pairs
- Assumption in previous work: a passage containing the answer is a good passage
- A good passage is the one that contains the answer and a support to the answer (relevance)

| Question:             |     | ion:   | What <u>Russian emigre</u> to the <u>U.S.</u> is <u>credited</u> with <u>inventing</u> the <u>helicopter</u> ?              |                                                                                       |
|-----------------------|-----|--------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| <b>Ground Truth</b> : |     | Truth: | Igor                                                                                                                        |                                                                                       |
|                       | r a |        | Passages                                                                                                                    |                                                                                       |
| D.                    | 1   | 0      | Wright brothers: Orville and Wilbur Wright, were the two <u>Americans</u> who are <u>credited</u> with <u>inventing</u> and |                                                                                       |
| r <sub>1</sub>        | 1   |        | building the world's <u>first</u> successful <u>airplane</u> .                                                              |                                                                                       |
| D                     | 1   | 1      | The fellow Russian emigre, Igor Ivanovich Sikorsky, was an American aviation pioneer in both                                |                                                                                       |
| r <sub>2</sub>        |     | 1      | 1                                                                                                                           | helicopters and fixed-wing aircraft, who was credited with many other accomplishments |
| P <sub>3</sub>        | 0   | 1      | <i>Igor</i> Ivanovich Sikorsky was an orthodox chiristian.                                                                  |                                                                                       |
| D                     | 1   | 1      | His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sikorsky's <u>aircraft</u> company,      |                                                                                       |
| <b>r</b> 4            | T   | 1      | where <b>Igor</b> developed the first helicopter and the first passenger airplane.                                          |                                                                                       |

# GAN-based training

- Adversarial training: Try to separate good and bad examples
- General GAN:
  - Generator learns the distribution of true data
  - Discriminator tries to separate true and fake data
- Extended GAN framework
  - Generator
  - 2 discriminators: relevant and contain answer?



## Some formulas

- Overall objective  $J = \min_{\theta} \max_{\phi,\xi} \sum_{n=1}^{N} \left( \mathbb{E}_{d \sim p_{true}(d|q_{n},a)} [\log D_{\phi}^{r}(d|q_{n})] + \frac{\mathbb{E}_{d \sim p_{\theta}(d|q_{n},a)} [\log(1 D_{\phi}^{r}(d|q_{n}))] \lambda_{1} \cdot \mathbb{E}_{d \sim p_{\theta}(d|q_{n},a)} [\log D_{\xi}^{a}(d|q_{n})] + \lambda_{2} \cdot \mathbb{E}_{d \sim p_{true}(d|q_{n},a)} [\log \frac{p_{true}(d|q_{n},a)}{p_{\theta}(d|q_{n},a)}] \right)$
- Generator:  $p_{\theta}(d|q_n, a)$
- Rank discriminator (relevance):  $D_{\phi}^{r}$
- Answer discriminator:  $D^a_{\xi}$
- Regularizer:  $\mathbb{E}_{d \sim p_{true}(d|q_n,a)} \left[ \log \frac{p_{true}(d|q_n,a)}{p_{\theta}(d|q_n,a)} \right]$

### Some more formulas for losses

- Rank discriminator:  $\mathcal{L}_{D_{\phi}^{r}} = -\sum_{n=1}^{N} \left( \mathbb{E}_{d \sim p_{true}} [\log(\sigma(f_{\phi}(d, q_{n})))] + \mathbb{E}_{d \sim p_{\theta^{*}}} [\log(1 \sigma(f_{\phi}(d, q_{n})))] \right)$
- Answer discriminator:  $\mathcal{L}_{D_{\xi}^{a}} = -\sum_{n=1}^{N} \left( \sum_{d \in A^{+}} \log \sigma(f_{\xi}((d, q_{n}))) + \sum_{d \in A^{-}} \log(1 \sigma(f_{\xi}(d, q_{n}))) \right)$

• Generator:  

$$\mathcal{L}_{p_{\theta}} = \sum_{n=1}^{N} \left( \mathbb{E}_{d \sim p_{\theta}} [\log(1 - \sigma(f_{\phi^{*}}(d, q_{i})))] - \lambda_{1} \mathbb{E}_{d \sim p_{\theta}} [\log \sigma(f_{\xi^{*}}(d, q_{n}))] - \lambda_{2} \mathbb{E}_{d \sim p_{true}} [\log p_{\theta}(d|q_{n}, a)] \right)$$

## Training

- Document and question encoding: BiLSTM + self-attention
- Score functions in discriminators:  $f_{\phi}(d_i, q) = p(d_i|q) = \operatorname{softmax}(\max_i (\hat{d}_i^j W q)),$
- Score by generator:  $f_{\theta}(d_i, q) = p_{\theta}(a|q, d_i) = \max_{j,k} p_s^j(a|q, d_i) p_e^k(a|q, d_i)$
- REINFORCE algorithm for training

### Retriever and Reader

- Retriever: BM25
- Our ranker
- Reader: A reader based on 12-layer BERT

```
P(s, e, i) = P(d_i) \cdot P(s|d_i) \cdot P(e|d_i)P(s|d_i) = \operatorname{softmax}(d_i w_{start})_sP(e|d_i) = \operatorname{softmax}(d_i w_{end})_tP(d_i) = \operatorname{softmax}(\hat{D}^T w_{doc})_i
```



### Some experimental results

#### • Test collections

| Dataset      | #Train | #Dev   | #Test  | #Psgs/Que      |
|--------------|--------|--------|--------|----------------|
| Quasar-T     | 37,012 | 3,000  | 3,000  | 100            |
| SearchQA     | 99,811 | 13,893 | 27,247 | ~49.6          |
| TriviaQA     | 87,291 | 11,274 | 10,790 | 100            |
| CuratedTREC  | 1,353  | 133    | 694    | Wikipedia (50) |
| Nat.Question | 79,168 | 8,757  | 3,610  | Wikipedia (50) |

#### • Reranking (part)

#### Final answer

|         | Ģ    | SearchQA |      |      |             |      |
|---------|------|----------|------|------|-------------|------|
|         | BM25 | DSQA     | Ours | BM25 | DSQA        | Ours |
| Hits@1  | 6.3  | 27.7     | 35.2 | 13.7 | <i>59.9</i> | 63.9 |
| Hits@3  | 10.9 | 36.8     | 52.0 | 24.1 | 69.8        | 83.0 |
| Hits@5  | 15.2 | 42.6     | 59.5 | 32.7 | 75.5        | 88.8 |
| Hits@20 | -    | -        | 72.3 | -    | -           | 97.5 |
| Hits@50 | -    | -        | 74.8 | -    | -           | 99.8 |

|                | Quasar-T | SearchQA | Cur.Trec | Trivia | NQ <sub>sub</sub> |
|----------------|----------|----------|----------|--------|-------------------|
| BM25           | 41.6     | 57.9     | 21.3     | 47.1   | 26.7              |
| R <sup>3</sup> | 35.3     | 49.0     | 28.4     | 47.3   | -                 |
| DSQA           | 42.2     | 58.8     | 29.1     | 48.7   | -                 |
| DPR            | -        | -        | 28.0     | 57.0   | 27.4              |
| Ours           | 45.5     | 61.2     | 29.3     | 60.7   | 29.5              |

## Example

| Question:             |   | tion:  | What <u>Russian emigre</u> to the <u>U.S.</u> is <u>credited</u> with <u>inventing</u> the <u>helicopter</u> ?                                                                                                          |           |           |  |  |  |  |  |
|-----------------------|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--|--|--|--|--|
| <b>Ground Truth</b> : |   | Truth: | Igor                                                                                                                                                                                                                    |           |           |  |  |  |  |  |
|                       | r | a      | Passages                                                                                                                                                                                                                | DPR Score | Our Score |  |  |  |  |  |
| $P_1$                 | 1 | 0      | Wright brothers: Orville and Wilbur Wright, were the two <u>Americans</u> who are <u>credited</u> with <u>inventing</u> and building the world's <u>first</u> successful <u>airplane</u> .                              | 71.7      | 242.9     |  |  |  |  |  |
| $P_2$                 | 1 | 1      | The fellow <u>Russian emigre</u> , <i>Igor</i> Ivanovich Sikorsky, was an <u>American aviation pioneer</u> in both <u>helicopters and fixed-wing aircraft</u> , who was <u>credited</u> with many other accomplishments | 75.6      | 286.8     |  |  |  |  |  |
| P <sub>3</sub>        | 0 | 1      | -Igor Ivanovich Sikorsky was an orthodox chiristian.                                                                                                                                                                    | 57.7      | 178.1     |  |  |  |  |  |
| <b>P</b> <sub>4</sub> | 1 | 1      | His paternal grandfather, Leo Shoumatoff, was the bussiness manager of <i>Igor</i> Sikorsky's <u>aircraft</u> company, where <b>Igor</b> <u>developed the first helicopter</u> and the first passenger airplane.        | 74.4      | 292.3     |  |  |  |  |  |

## How does reranking helps in overall efficiency?

 Only a few reranked passages are sufficient

- Lightweight ranker: a fraction of retrieval and machine reading time
  - Retriever: 3.3 ms
  - Ranker: 0.5 ms
  - Reader: 57.3 ms



## Conclusions

- Grounded dialogue (and QA) is an important problem
- Key questions:
  - How to select a relevant piece of knowledge / document content?
  - How to incorporate it into response generation / selection?
  - How to ground an answer in QA?
- In this talk
  - Retrieval-based dialogue grounded in document / knowledge
  - Finding grounding passages for QA
- Other interesting questions not covered
  - Grounded Generation-based dialogue
  - Incorporating pre-trained models
  - More types of grounding: Emotion, ...
  - Using GNN
  - Explicit reasoning process (symbolic + neural)
  - How to evaluate a dialogue system?