Synthesizing Relational Data with Differential Privacy

Xiaokui Xiao

School of Computing

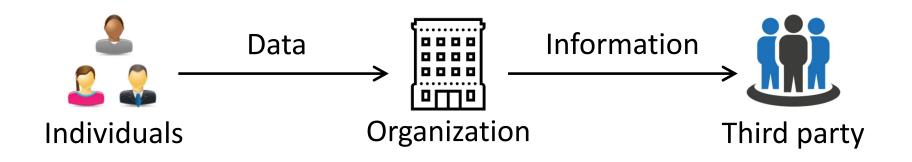
National University of Singapore

Outline

- Statistical databases: what and why
- Existing solutions
- The road less travelled: synthetic data
- Conclusion and future work

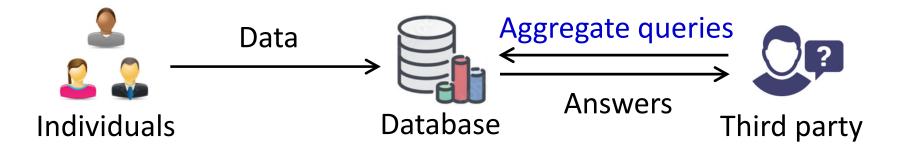
Introduction

- We live in an era where data is constantly being collected, analyzed, and shared
- Protecting privacy while sharing useful information is an important problem



Statistical Databases

- A database that answers only aggregate queries, for privacy protection
- Additional defence by
 - Returning noisy answers, and
 - Denying queries when necessary
- But still non-trivial to ensure privacy protection



Linear Program Reconstruction Attack

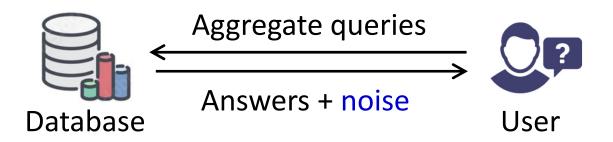
- A type of attacks that reconstruct a table T from noisy count query results
- Basic idea:
 - Formulate a linear program from the noisy count query results
 - Solve the linear program to infer the tuples in T
- How effective is this attack?
 - Even if each count has $o(\sqrt{n})$ noise, we could reconstruct a large portion of the input data, using $O(n\log^2 n)$ random queries
 - □ *n*: total number of possible tuples

Database Reconstruction in Practice

- The US Census Bureau applied the linear program reconstruction attack on the census data released in 2010
- They were able to reidentified data from 17% of the US population

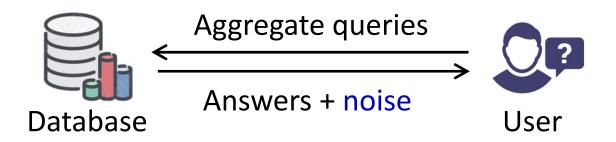
Statistical Database with Differential Privacy

- PINQ [SIGMOD 2009]
- wPINQ [VLDB 2014]
- FLEX [VLDB 2018]
- APEx [SIGMOD 2019]
- PrivateSQL [VLDB 2019]
- Chorus [EuroS&P 2020]
- ...



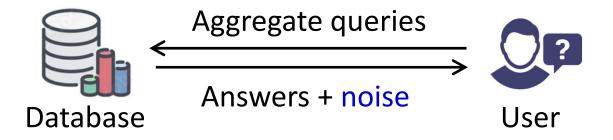
Statistical Database with Differential Privacy

- Basic idea:
 - $lue{}$ Choose a total privacy budget $arepsilon_{tot}$
 - \Box For each query Q_i , compute the privacy budget ε_i consumed in the noisy answer
 - □ Stop when $\sum_{i} \varepsilon_{i} > \varepsilon_{tot}$
- Advantage: Strong privacy protection against attacks

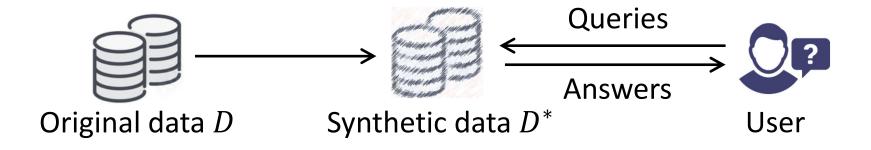


Statistical Database with Differential Privacy

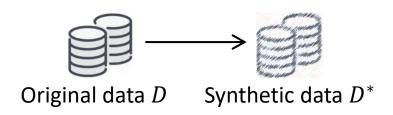
- Common problem: the statistical database becomes unusable after the privacy budget is depleted
- To avoid this, we consider a different route: synthetic data



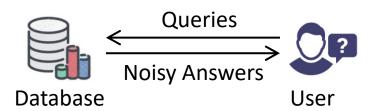
- Basic idea
 - $lue{}$ Given the original dataset D, generate a synthetic dataset D^* that mimics D
 - \Box Use D^* to answer queries
- Rationale
 - $lue{}$ As long as D^* is generated with differential privacy, the query answers from D^* are "safe"



Synthetic Data vs. Noisy Answers



- Unlimited queries supported
- No change needed to the DBMS
- No additional query cost
- But no accuracy guarantee



- Limit on number of queries
- Considerable changes to the DBMS
- Additional computation cost per query
- Gives accuracy guarantees

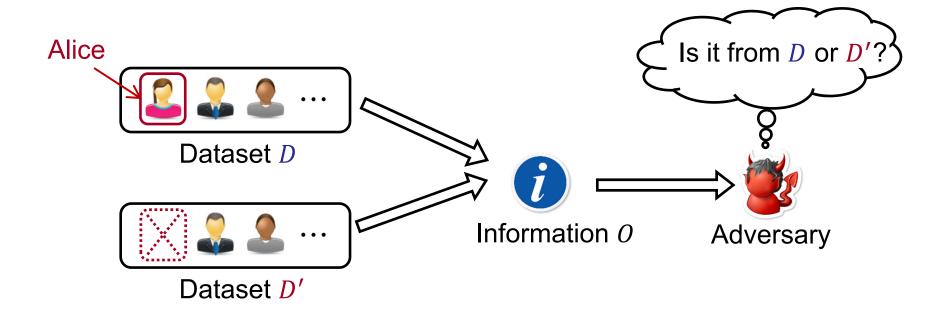
Roadmap

- Differential privacy (DP)
- Synthesizing relational data with DP
- Conclusion

Differential Privacy

- A notion of privacy proposed by theoreticians in 2006
 - Becomes popular over the years
 - Now adopted by Apple, US Census, etc.
- Its formulation borrows ideas from cryptography
 - Models privacy protection as a game

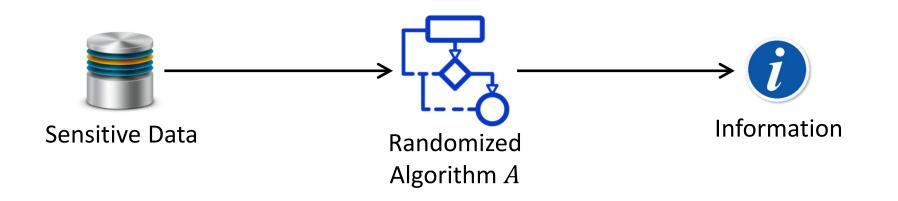
Differential Privacy: Rationale



- D' = D with Alice's information removed
- Intuition: If the adversary is unable to tell whether O is computed from D or D', then Alice's privacy is preserved

Differential Privacy: Details

Differential privacy requires that any information to be shared should be generated using a randomized algorithm A

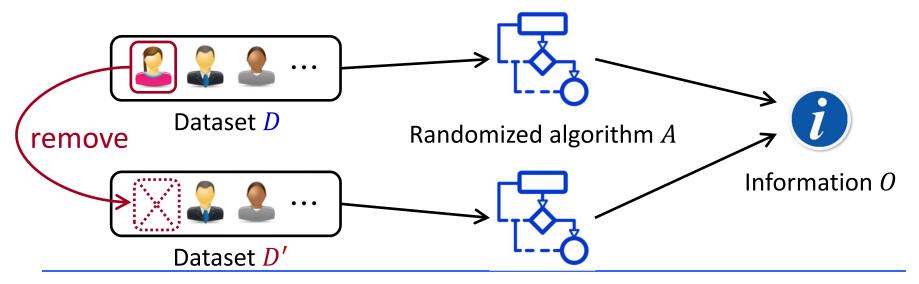


Differential Privacy: Details

• A randomized algorithm A satisfies ε -differential privacy, iff

$$\exp(-\varepsilon) \le \frac{\Pr[A(D) = 0]}{\Pr[A(D') = 0]} \le \exp(\varepsilon)$$

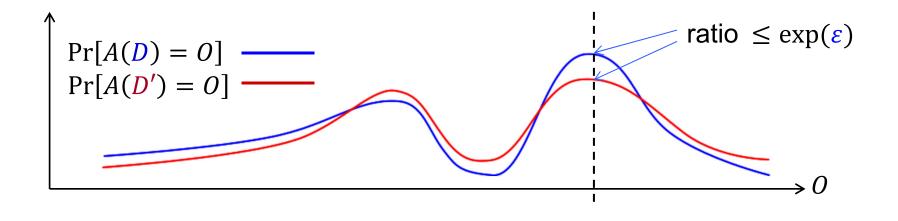
for any two *neighboring* datasets D and D' and any output O of A



Differential Privacy: Illustration of Definition

$$\exp(-\varepsilon) \le \frac{\Pr[A(D) = 0]}{\Pr[A(D') = 0]} \le \exp(\varepsilon)$$

for any two *neighboring* datasets D and D' and any output O of A



Differential Privacy: Mechanisms

$$\exp(-\varepsilon) \le \frac{\Pr[A(D) = 0]}{\Pr[A(D') = 0]} \le \exp(\varepsilon)$$

- How can we achieve differential privacy?
- A canonical approach:
 - Take a non-private algorithm
 - Randomize it by injecting noise
- The amount and distribution of noise need to be carefully chosen
 - Details omitted

Roadmap

- Differential privacy (DP)
- Synthesizing relational data with DP
 - Single table synthesis
 - Multi-table synthesis
- Conclusion

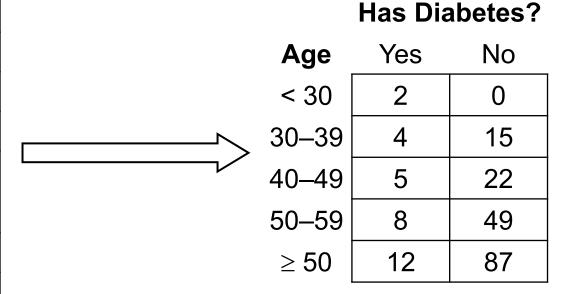
Synthetic One Table with DP

- Problem definition:
 - ullet Given a table T, release a synthetic version T^* in a way that satisfies ϵ -differential privacy
- Straightforward solution:
 - Convert T to a set of counts
 - Add noise to the counts
 - Map the noisy counts back to a synthetic table

Age	Has Diabetes?
< 30	Yes
< 30	Yes
30–39	No
40–49	No
• • •	• • •
50–59	No
≥ 50	Yes

Step 1: Convert the data to a frequency matrix M

Age	Has Diabetes?
< 30	Yes
< 30	Yes
30–39	No
40–49	No
50–59	No
≥ 50	Yes



- Step 1: Convert the data to a frequency matrix M
- Step 2: Add noise into M

Has Diabetes?

Age	Yes	No
< 30	2	0
30–39	4	15
40–49	5	22
50–59	8	49
≥ 50	12	87

- Step 1: Convert the data to a frequency matrix M
- Step 2: Add noise into M
- Step 3: map M back to a synthetic table

Has Diabetes?

Age	Yes	No
< 30	2 + x ₀	0 + x ₅
30–39	4 + x ₁	15 + x ₆
40–49	5 + x ₂	22 + x ₇
50–59	8 + x ₃	49 + x ₈
≥ 50	12 + x ₄	87 + x ₉

- The good: simple and easy to implement
- The bad: it only works when M has a small number of entries
- But in practice, M could be large, especially when we have a sizable number d of attributes

Has Diabetes?

Age	Yes	No
< 30	2 + x ₀	0 + x ₅
30–39	4 + x ₁	15 + x ₆
40–49	5 + x ₂	22 + x ₇
50-59	8 + x ₃	49 + x ₈
≥ 50	12 + x ₄	87 + x ₉

- Suppose that we have n records, but M contains m cells with $m \gg n$
- The noise overwhelms the signal
 - \square We have m pieces of noise
 - But only O(n) pieces of information
- This results in useless synthetic data

Has Diabetes?

Age	Yes	No
< 30	2 + x ₀	0 + x ₅
30–39	4 + x ₁	15 + x ₆
40–49	5 + x ₂	22 + x ₇
50-59	8 + x ₃	49 + x ₈
≥ 50	12 + x ₄	87 + x ₉

Towards a better solution

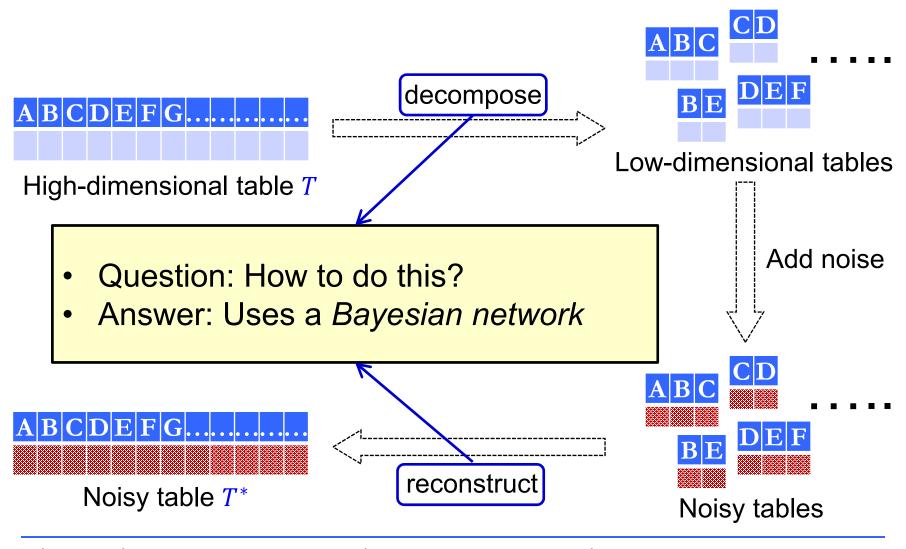
Observation:

- Attributes in datasets are often correlated
- ullet Even if a dataset has d dimensions, its *intrinsic* dimensionality could be much smaller than d

Idea:

 Exploit the correlations among attributes to mitigate the sparsity issue

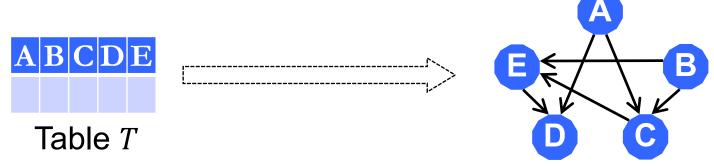
Our Approach: PrivBayes



Zhang et al. PrivBayes: Private Data Release via Bayesian Networks. TODS 2017

Bayesian Network

- A graph that captures the correlations among the attributes
- Example: Table T(A, B, C, D, E)

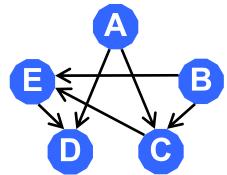


Meaning:

Bayesian network N

- \square $AB \longrightarrow C$; $BC \longrightarrow E$; $AE \longrightarrow D$
- Decomposition:
 - $\Box T_1(A, B, C), T_2(B, C, E), T_3(A, E, D)$

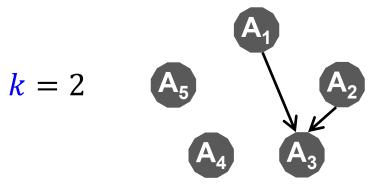
Bayesian Network



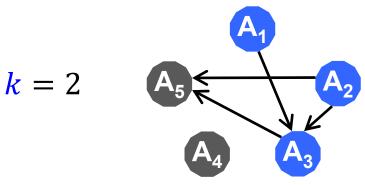
- Noisy tables:
 - $T_1^*(A,B,C), T_2^*(B,C,E), T_3^*(A,E,D)$
- Generation of synthetic tuple t(a, b, c, d, e)
 - Sample a, b, c based on $T_1^*(A, B, C)$
 - Result: t(a, b, c, -, -)
 - \square Sample e based on $T_2^*(B,C,E)$ and (b,c)
 - Result: t(a, b, c, -, e)
 - □ Sample d based on $T_3^*(A, E, D)$ and (a, e)
 - Result: t(a, b, c, d, e)

Bayesian Network with DP

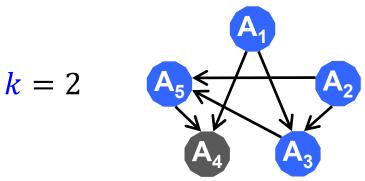
- We need a way to construct the Bayesian network with differential privacy
 - Prior solutions were not designed with differential privacy in mind
- We devise our own solution based on a classic approach by Chow and Liu, with noise injected to achieve differential privacy



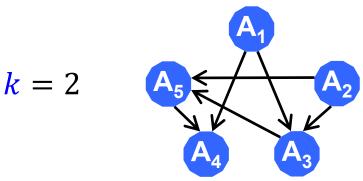
- Input: d attributes $A_1, A_2, ..., A_d$, a positive integer k
- Step 1: Initialize an empty Bayesian network N
- Step 2: Consider all possible (k + 1)-attribute combinations $A_{i1}, A_{i2}, ..., A_{ik}, A_j$, and evaluate $A_{i1}, A_{i2}, ..., A_{ik} \longrightarrow A_j$
 - □ Choose the combination that maximize the mutual information between $A_{i1} \times \cdots \times A_{ik}$ and A_{j}
- Step 3: Add the chosen A_{i1} , A_{i2} , ..., $A_{ik} \longrightarrow A_j$ into N



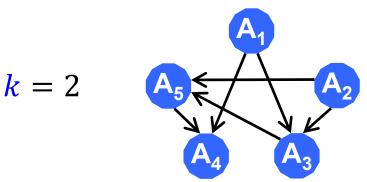
- Input: d attributes $A_1, A_2, ..., A_d$, a positive integer k
- Step 1: Initialize an empty Bayesian network N
- Step 2: Consider all possible (k + 1)-attribute combinations $A_{i1}, A_{i2}, ..., A_{ik}, A_j$, and evaluate $A_{i1}, A_{i2}, ..., A_{ik} \longrightarrow A_j$
 - □ Choose the combination that maximize the mutual information between $A_{i1} \times \cdots \times A_{ik}$ and A_{i}
- Step 3: Add the chosen A_{i1} , A_{i2} , ..., $A_{ik} \longrightarrow A_j$ into N
- Repeat Steps 2-3, but requiring A_{i1} , A_{i2} , ..., $A_{ik} \in \mathbb{N}$ and $A_j \notin \mathbb{N}$



- Input: d attributes $A_1, A_2, ..., A_d$, a positive integer k
- Step 1: Initialize an empty Bayesian network N
- Step 2: Consider all possible (k + 1)-attribute combinations $A_{i1}, A_{i2}, \dots, A_{ik}, A_j$, and evaluate $A_{i1}, A_{i2}, \dots, A_{ik} \longrightarrow A_j$
 - □ Choose the combination that maximize the mutual information between $A_{i1} \times \cdots \times A_{ik}$ and A_{j}
- Step 3: Add the chosen A_{i1} , A_{i2} , ..., $A_{ik} \longrightarrow A_j$ into N
- Repeat Steps 2-3, but requiring A_{i1} , A_{i2} , ..., $A_{ik} \in \mathbb{N}$ and $A_j \notin \mathbb{N}$



- Input: d attributes $A_1, A_2, ..., A_d$, a positive integer k
- Step 1: Initialize an empty Bayesian network N
- Step 2: Consider all possible (k + 1)-attribute combinations $A_{i1}, A_{i2}, ..., A_{ik}, A_j$, and evaluate $A_{i1}, A_{i2}, ..., A_{ik} \longrightarrow A_j$
 - □ Choose the combination that maximize the mutual information between $A_{i1} \times \cdots \times A_{ik}$ and A_{j}
- Step 3: Add the chosen A_{i1} , A_{i2} , ..., $A_{ik} \longrightarrow A_j$ into N
- Repeat Steps 2-3, but requiring A_{i1} , A_{i2} , ..., $A_{ik} \in \mathbb{N}$ and $A_j \notin \mathbb{N}$

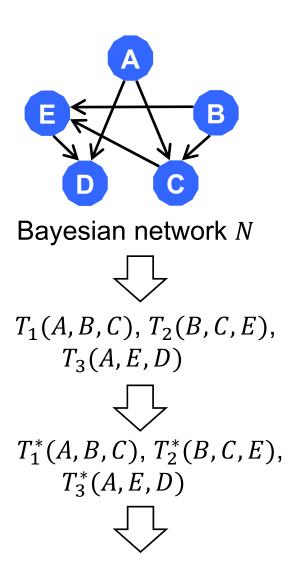


How to make it differentially private?

- Input: d attributes $A_1, A_2, ..., A_d$, a positive integer k
- Step 1: Initialize an empty Bayesian network N
- Step 2: Consider all possible (k + 1)-attribute combinations $A_{i1}, A_{i2}, ..., A_{ik}, A_j$, and evaluate $A_{i1}, A_{i2}, ..., A_{ik} \longrightarrow A_j$
 - Choose the combination that maximize the mutual information between $A_{i1} \times \cdots \times A_{ik}$ and A_{i}
 - Add noise into the mutual information before selecting the max
- Step 3: Add the chosen A_{i1} , A_{i2} , ..., $A_{ik} \longrightarrow A_j$ into N
- Repeat Steps 2-3, but requiring A_{i1} , A_{i2} , ..., $A_{ik} \in \mathbb{N}$ and $A_j \notin \mathbb{N}$

Summary of PrivBayes

- Use a noisy version of the Chow-Liu approach to construct a Bayesian network N
- Obtain the low-dimensional tables corresponding to N
- Add noise into those tables
- Use them to generate synthetic data



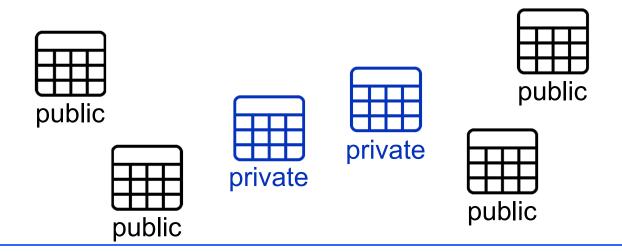
Subsequent Improvement: PrivMRF

- Main idea: Use Markov random fields (MRF) instead of a Bayesian network
 - This provides more flexibility in terms of the choices of low-dimensional tables
- Result: much more accurate synthetic data
- It became the winning solution in the NIST 2020 Differential Privacy Temporal Map Challenge

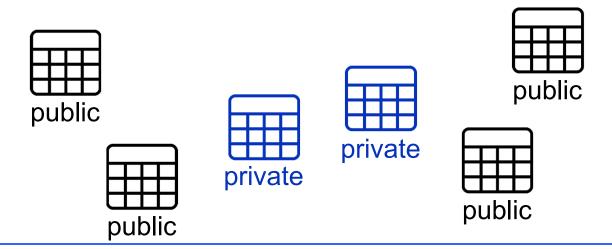
Roadmap

- Differential privacy (DP)
- Synthesizing relational data with DP
 - Single table synthesis: PrivBayes, PrivMRF
 - Multi-table synthesis
- Conclusion

- Suppose that we have a database containing multiple tables
 - Some are private, some are public
- How can we synthesize the database?



- Straightforward solution:
 - Synthesize each private table separately (e.g., using PrivMRF)
- Problem:
 - It is unable to handle foreign keys



- Example from census data:
 - A table containing information about individuals
 - Another table containing household information

Age	Gender	 H-ID
35	M	 1
34	F	 1
3	F	 1
27	M	 2
28	F	 2
	ndividual i	

If we synthesize these two tables separately:

Age	Gender	 H-ID
35	M	 1
34	F	 1
3	F	 1
27	M	 2
28	F	 2

Individual Table T_I

H-ID	Ownership of Dwelling	
1	Υ	
2	N	

Household Table T_H

- If we synthesize these two tables separately:
 - We have synthetic individuals, and synthetic households
 - How to assign individuals to households?

Age	Gender	 H-ID
26	F	 ?
4	M	 ?
39	F	 ?
38	M	 ?
27	M	 ?

Table	T_I
	Table

H-ID	Ownership of Dwelling	•••
1	N	
2	Υ	

Household Table T_H

- What if we
 - Augment the household table with aggregate information of household members

Age	Gender	 H-ID
26	F	 ?
4	M	 ?
39	F	 ?
38	M	 ?
27	M	 ?

Individual	Table T_I
------------	-------------

H-ID	Ownership of Dwelling	
1	N	
2	Υ	

Household Table T_H

- What if we
 - Augment the household table with aggregate information of household members
 - Synthesize the aggregate information, and use it to match individuals to households

Age	Gender	 H-ID
26	F	 ?
4	M	 ?
39	F	 ?
38	M	 ?
27	M	 ?

H-ID	Ownership of Dwelling	 Size	Avg Age	
1	N	 		
2	Y	 		

Household Table T_H

Individual Table T_I

Problem:

- Too many augmented attributes needed
- Matching individuals to household is non-trivial

Age	Gender	 H-ID
26	F	 ?
4	M	 ?
39	F	 ?
38	M	 ?
27	M	 ?

H-ID	Ownership of Dwelling	 Size	Avg Age	
1	N	 		
2	Y	 		

Household Table T_H

Individual Table T_I

Our idea:

- Assume that there is some latent variable that decides the type of each household
- Sample households and their members based on the latent variables

Age	Gender	 H-ID
26	F	 ?
4	M	 ?
39	F	 ?
38	M	 ?
27	M	 ?

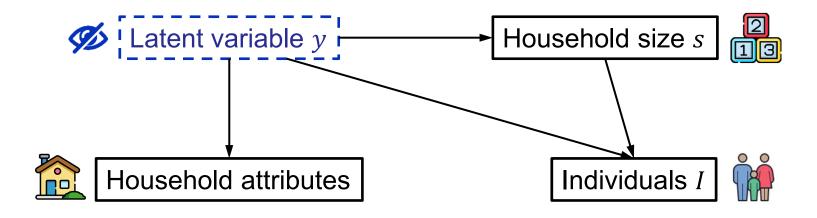
H-ID	Ownership of Dwelling	 Latent Variable	
1	N	 	
2	Y	 	

Household Table T_H

Individual Table T_I

Generative Process

- Sample the latent variable y
- Given y, sample the size s of the household and its attributes
- Given y and s, sample the attributes of s individuals

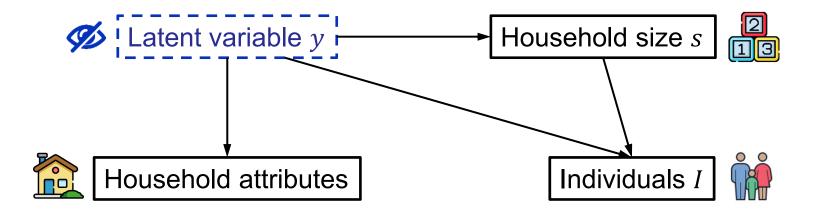


Model

Likelihood of a household H with size s:

$$p(H) = \sum_{y \in Y} \left(p(y) \cdot p(s \mid y) \prod_{j=1}^{s} p(I_j \mid y) \right)$$

- Problem:
 - Given the observed households, estimate the distributions of y, s given y, and individuals given y



Model

Likelihood of a household H with size s:

$$p(H) = \sum_{y \in Y} \left(p(y) \cdot p(s \mid y) \prod_{j=1}^{s} p(I_j \mid y) \right)$$

- Problem:
 - \Box Given the observed households, estimate the distributions of y, s given y, and individuals given y
- Solution:
 - Use a graphical model with latent variables
 - Parameter estimation: use expectation maximization (EM)
 - With noise added to achieve differential privacy

Algorithm

 Given the two tables, we use EM + DP to obtain a model of individual + household type

Age	
35	
34	
3	

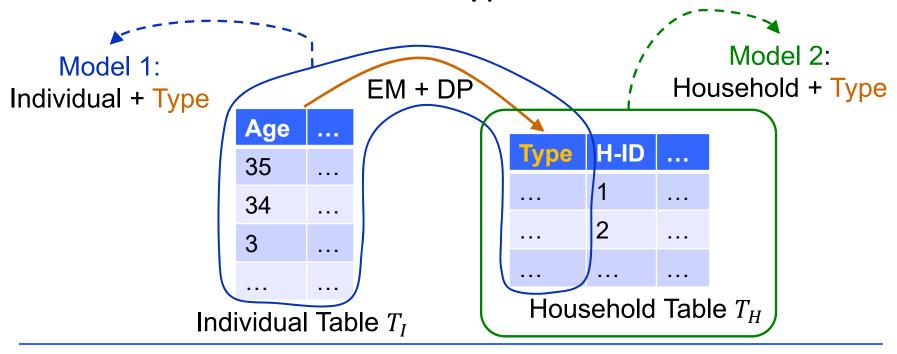
Individual Table T_I

H-ID	
1	
2	

Household Table T_H

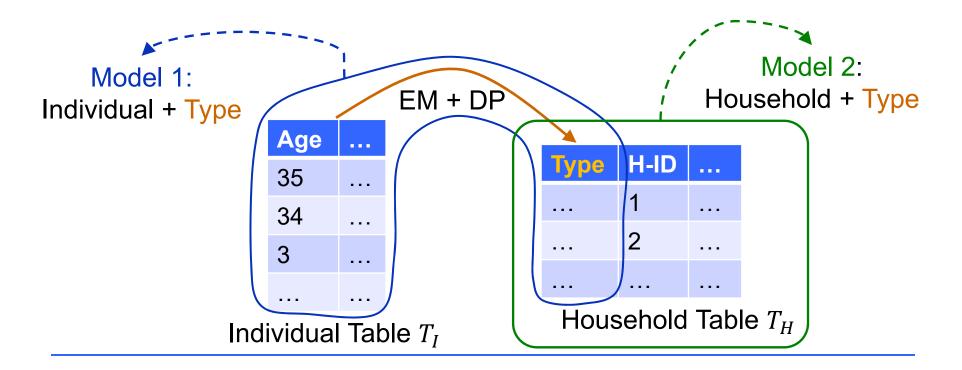
Algorithm

- Given the two tables, we use EM + DP to obtain a model of individual + household type
- And we use PrivMRF to obtain a model of household + household type



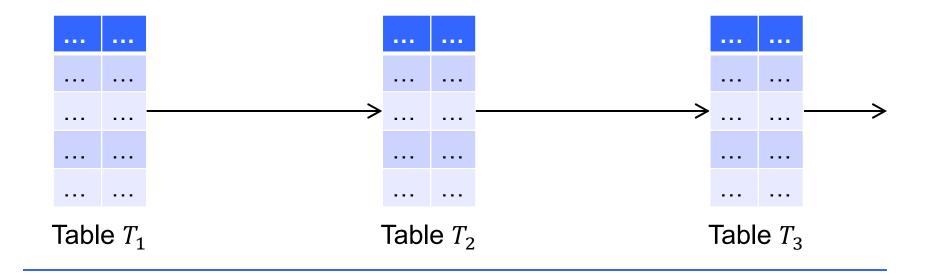
Algorithm

This algorithm works for the case of two tables, and can be extended to more general cases



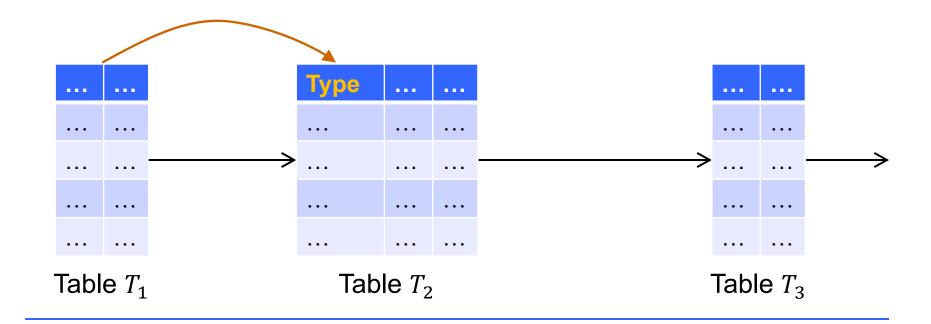
Extension: Foreign Key Chain

- For each foreign key, we consider latent variables in the table that it refers to
- We iteratively apply the two-table algorithm



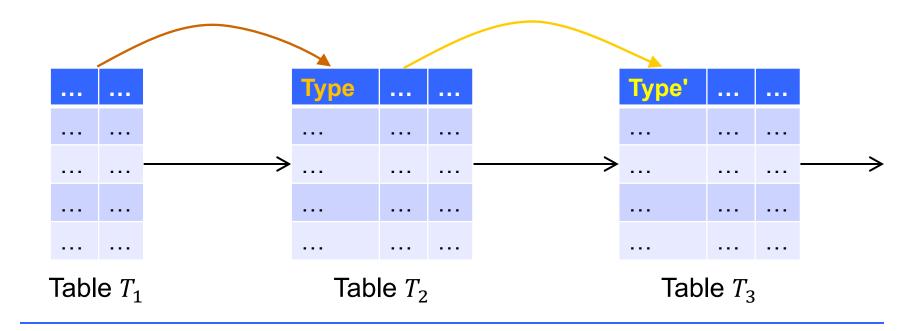
Extension: Foreign Key Chain

- For each foreign key, we consider latent variables in the table that it refers to
- We iteratively apply the two-table algorithm



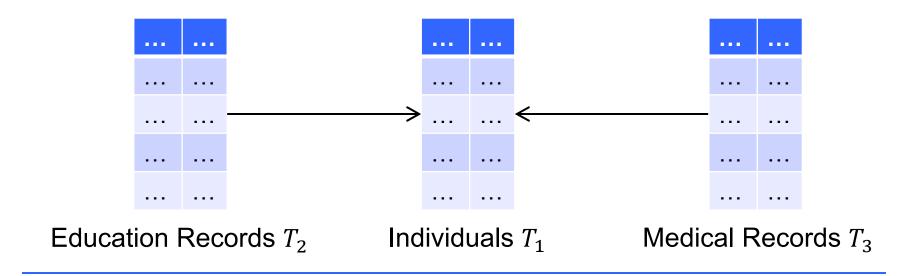
Extension: Foreign Key Chain

- For each foreign key, we consider latent variables in the table that it refers to
- We iteratively apply the two-table algorithm



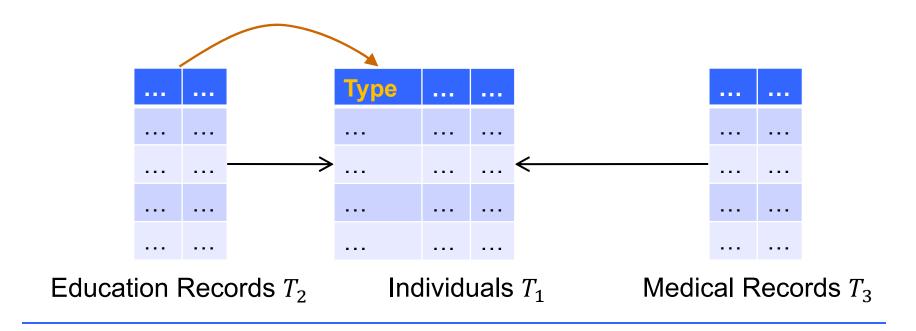
Extension: Reverse Star Schema

For each foreign key, apply the two-table algorithm



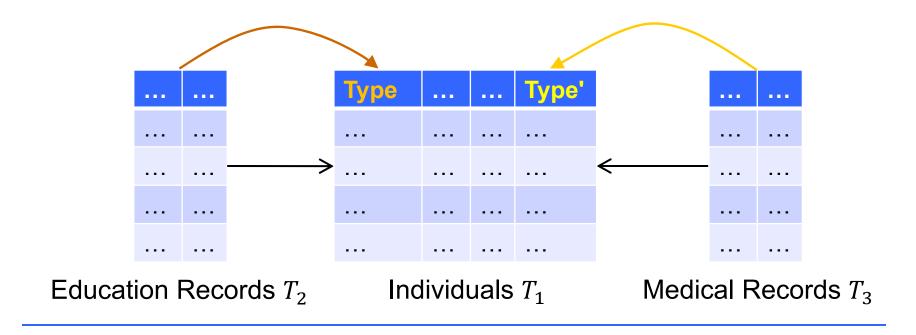
Extension: Reverse Star Schema

For each foreign key, apply the two-table algorithm



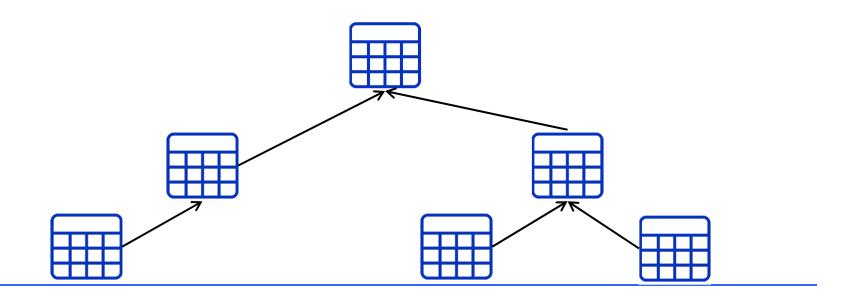
Extension: Reverse Star Schema

For each foreign key, apply the two-table algorithm



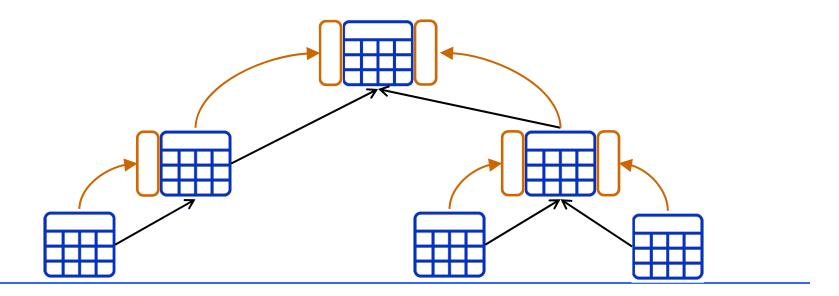
Extension: General Case

- In general, we can handle the case when
 - Each private table has at most one foreign key
 - There is no cycle in the key references



Extension: General Case

- Algorithm
 - Apply the two-table algorithm on each foreign key in a bottom up manner
 - Apply PrivMRF on the root(s)



Experiments: Datasets

Datasets: from the Integrated Public Use
 Microdata Series (www.ipums.org)

Dataset	# of Tuples	# of Attributes	Domain size
Person	561,046	16	$\approx 4.1 \times 10^{11}$
Household	251,364	9	$\approx 1.8 \times 10^6$

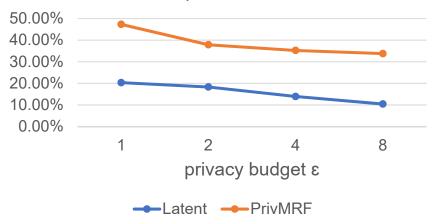
Experiments: Queries

- We consider count queries concerning both households and individuals
 - "How many households have annual income > x and at least one member with age > 30?"
- Query predicates are randomly generated:
 - 1 range predicate on a household attribute
 - k range predicates on individual attributes
- Error metric:

absolute error of the query

max{query result, 0.5% of total population}

Queries with 1 predicate on individuals



50.00% 40.00% 30.00% 10.00% 1 2 4 8 privacy budget ε Latent PrivMRF

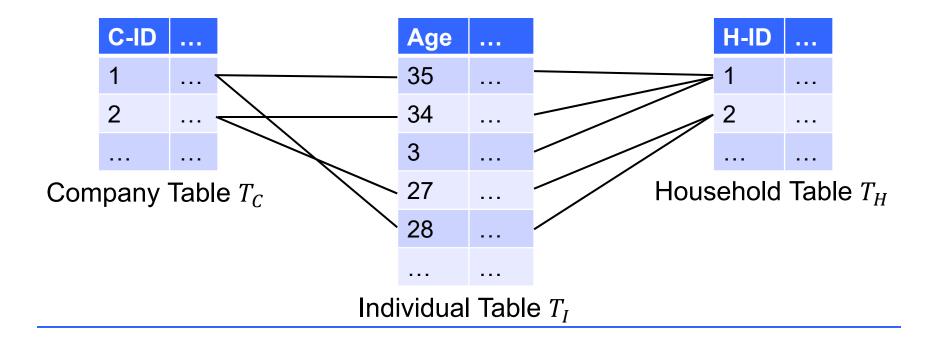
Queries with 3 predicates on individuals



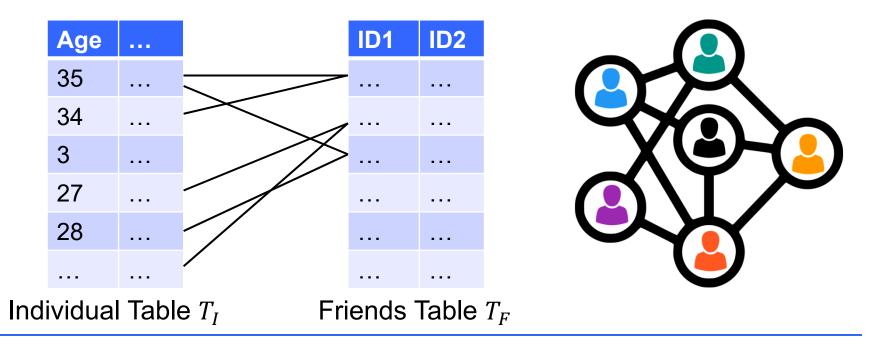
Summary

- Synthetic relational data is a promising approach for statistical databases
 - Unlimited queries
 - No change to DBMS needed
- But handling foreign keys is a challenge
 - We have barely scratched the surface

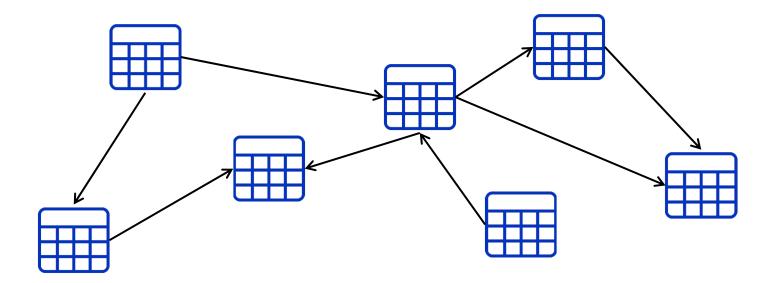
- Private tables with multiple foreign keys
- Main issue: Difficult to model the data



- Private tables with self-relationships
- Main issue: how to capture the topology of the induced graph?



Arbitrary foreign keys



- Beyond relational data
 - Time series
 - Trajectories
 - Transactions

Acknowledgement

Graham Cormode, University of Warwick

Kuntai Cai, NUS

Xiaoyu Lei,
U. of Connecticut

Cecilia M. Procopiuc, Google

Divesh Srivastava, AT&T Labs-Research

Jianxin Wei, NUS

Jun Zhang, Formerly NTU, Singapore