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‘ Introduction

= We live in an era where data is constantly
being collected, analyzed, and shared

m Protecting privacy while sharing useful
information is an important problem
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‘ Statistical Databases

= A database that answers only aggregate queries,
for privacy protection

= Additional defence by
0 Returning noisy answers, and

o Denying queries when necessary

= But still non-trivial to ensure privacy protection
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Linear Program Reconstruction Attack

= A type of attacks that reconstruct a table T from
noisy count query results

m Basic idea:

o Formulate a linear program from the noisy count
qguery results

o Solve the linear program to infer the tuplesin T
= How effective is this attack?

o Even if each count has o(+y/n) noise, we could
reconstruct a large portion of the input data, using
0 (nlog?n) random queries

o n: total number of possible tuples

Dinur and Nissim. Revealing Information while Preserving Privacy. PODS 2003



‘ Database Reconstruction in Practice

m The US Census Bureau applied the linear
program reconstruction attack on the census
data released in 2010

m They were able to reidentified data from 17%
of the US population

https://www.census.gov/content/dam/Census/newsroom/press-kits/2019/jsm/presentation-
deploying-differential-privacy-for-the-2020-census-of-pop-and-housing.pdf



Statistical Database with Differential

Privacy

PINQ SIGMOD 2009]
wPINQ [VLDB 2014]
FLEX VLDB 2018]
APEXx SIGMOD 2019]
PrivateSQL [VLDB 2019]
Chorus [EuroS&P 2020]
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Statistical Database with Differential

Privacy

= Basic idea:
0 Choose a total privacy budget ;¢

o For each query Q;, compute the privacy budget
g; consumed in the noisy answer

0 Stop when ) & > &t
= Advantage: Strong privacy protection against

attacks
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Statistical Database with Differential
Privacy

= Common problem: the statistical database
becomes unusable after the privacy budget is
depleted

= To avoid this, we consider a different route:
synthetic data
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‘ Synthetic Data with DP

m Basic idea

o Given the original dataset D, generate a synthetic
dataset D* that mimics D

0o Use D to answer queries

= Rationale

a Aslong as D* is generated with differential privacy,
the query answers from D™ are "safe"

o Queries
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‘ Synthetic Data vs. Noisy Answers
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= Unlimited queries
supported

= No change needed to the
DBMS

= No additional query cost
= But no accuracy guarantee

Queries
%j : >0

Noisy Answers
Database User

Limit on number of queries

Considerable changes to the
DBMS

Additional computation
cost per query

Gives accuracy guarantees
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‘ Roadmap

m Differential privacy (DP)
m Synthesizing relational data with DP

m Conclusion




‘ Differential Privacy

= A notion of privacy proposed by theoreticians
in 2006

0 Becomes popular over the years
2 Now adopted by Apple, US Census, etc.
m |ts formulation borrows ideas from

cryptography

o Models privacy protection as a game

Dwork et al. Calibrating Noise to Sensitivity in Private Data Analysis. TCC 2006.



‘ Differential Privacy: Rationale

Is it from D or D'?
o

[ ..... ] /VI ' >@f

nformation O Adversary

Dataset D'

m D' =D with Alice’s information removed

= Intuition: If the adversary is unable to tell whether O is
computed from D or D', then Alice’s privacy is preserved




‘ Differential Privacy: Details

= Differential privacy requires that any
information to be shared should be generated
using a randomized algorithm A

= f[‘fzj . 6

Sensitive Data Randomized Information
Algorithm A




‘ Differential Privacy: Details

= A randomized algorithm A satisfies e-differential

privacy, iff PrlA(D) = 0)
Pr[A(D") = O]

exp(—¢) < < exp(¢)

for any two neighboring datasets D and D' and any
output O of A
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‘ Differential Privacy: lllustration of
Definition

Pr|A(D) = 0]

PrlA(D)) = 0] = ¥P()

exp(—e¢) <

for any two neighboring datasets D and D' and any output O of A

ratio < exp(¢)

Pr[A(D) = 0] ——
Pr[A(D") = 0] —




‘ Differential Privacy: Mechanisms

Pr[A(D) = 0]] < exp(e)

exp(=€) S 5 DY = 0

m How can we achieve differential privacy?

= A canonical approach:
o Take a non-private algorithm
2 Randomize it by injecting noise
= The amount and distribution of noise need to
be carefully chosen
0 Details omitted




‘ Roadmap

m Differential privacy (DP)
m Synthesizing relational data with DP

o Single table synthesis
o Multi-table synthesis

m Conclusion




‘ Synthetic One Table with DP

m Problem definition:

0 Given a table T, release a synthetic version T" in a
way that satisfies e-differential privacy

m Straightforward solution:
0 Convert T to a set of counts
o Add noise to the counts

2 Map the noisy counts back to
a synthetic table

Age | Has Diabetes?

<30 Yes

<30 Yes
30-39 No
40-49 No
50-59 No

> 50 Yes




‘ Synthetic Data with DP

m Step 1: Convert the data to a frequency matrix M

Age | Has Diabetes?

<30 Yes Has Diabetes?
<30 Yes Age Yes No
30-39 No <30 2 0
4049 No | > 30-39| 4 15
40-49 5 22
50-59 8 49
50-59 No >50 | 12 | 87
> 50 Yes

Frequency Matrix M

Table T




‘ Synthetic Data with DP

m Step 1: Convert the data to a frequency matrix M
= Step 2: Add noise into M

Has Diabetes?
Age Yes No
<30 2 0
30-39 4 15
40-49 5 22
50-59 8 49
> 50 12 87

Frequency Matrix M




‘ Synthetic Data with DP

m Step 1: Convert the data to a frequency matrix M

m Step 2: Add noise into M

= Step 3: map M back to a
synthetic table

Has Diabetes?

Age Yes No
<30 | 2+Xx, | 0+ X;
30-39| 4+ x, |15+ Xxg
4049 | 5+ x, |22 + X,
50-59 | 8 + x5 |49 + x4
>50 |12 + x,|87 + X

Frequency Matrix M




‘ Synthetic Data with DP

m The good: simple and easy to implement

= The bad: it only works when M has a small

number of entries

m But in practice, M could be
large, especially when we
have a sizable number d of
attributes

Has Diabetes?

Age Yes No
<30 | 2+Xx, | 0+ X;
30-39| 4 + x, |15 + xg
4049 | 5+ x, |22 + X,
50-59 | 8 + x5 |49 + x4
>50 |12 + x,|87 + X

Frequency Matrix M




‘ Synthetic Data with DP

m Suppose that we have n records, but M
contains m cells withm > n

m The noise overwhelms the signal
Has Diabetes?

0 We have m pieces of noise Age Yes  No

0 But only O(n) pieces of <30 | 2+Xx, | 0+Xx5
information 30-39] 4+ x |15+ Xq
4049 | 5+ x, |22 + X,

m This results in useless 50-59 | 8 + x, |49 + x,
synthetic data >50 [12 + x,|87 + X,

Frequency Matrix M




‘ Towards a better solution

m Observation:
0 Attributes in datasets are often correlated

a Even if a dataset has d dimensions, its intrinsic
dimensionality could be much smaller than d

= |ldea:

2 Exploit the correlations among attributes to
mitigate the sparsity issue




‘ Our Approach: PrivBayes
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Zhang et al. PrivBayes: Private Data Release via Bayesian Networks. TODS 2017



‘ Bayesian Network

= A graph that captures the correlations among the
attributes

m Example: TableT(4,B,C,D,E)
PEEEE

>

o
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Table T
= Meaning: Bayesian network N
g AB > C; BC -—» E; AE > D
= Decomposition:
a0 T;(A,B,C), T,(B,C,E), T;(A,E, D)
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‘ Bayesian Network

A

= Noisy tables:
2o T{(4,B,C), T,(B,C,E), T; (A, E,D)
= Generation of synthetic tuple t(a, b, ¢, d, e)
0 Sample a, b, c based on T (4, B, C)
s Result: t(a,b,c,—,—)
0 Sample e based on T, (B, C, E) and (b, c)
s Result: t(a, b, c,—,e)
0 Sample d based on T5 (4, E, D) and (a, e)
s Result: t(a,b,c,d,e)




‘ Bayesian Network with DP

= We need a way to construct the Bayesian
network with differential privacy
o Prior solutions were not designed with differential
privacy in mind

m We devise our own solution based on a classic
approach by Chow and Liu, with noise injected
to achieve differential privacy

Chow and Liu. Approximating discrete probability distributions with dependence trees. TIT 1968



‘ Variant of the Chow-Liu Approach

= Input: d attributes 44, A,, ..., 4,4, a positive integer k
m Step 1: Initialize an empty Bayesian network N

m Step 2: Consider all possible (k + 1)-attribute combinations
Ail’AiZ’ ""Aik’Aj’ and evaluate Ail’AiZ’ ""Aik -> A]
0 Choose the combination that maximize the mutual information
between A;; X -+ X Ay, and 4;

= Step 3: Add the chosen A;q, 4;3, ..., Aj > Ajinto N
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‘ Variant of the Chow-Liu Approach

= Input: d attributes 44, A,, ..., 4,4, a positive integer k
m Step 1: Initialize an empty Bayesian network N

m Step 2: Consider all possible (k + 1)-attribute combinations
Ail’AiZ’ ""Aik’Aj’ and evaluate Ail’AiZ’ ""Aik -> A]

0 Choose the combination that maximize the mutual information
between A;; X -+ X Ay, and 4;

o Add noise into the mutual information before selecting the max
= Step 3: Add the chosen A;q, 4;3, ..., Aj > Ajinto N
= Repeat Steps 2-3, but requiring A;1, 4;3, ..., Ajx E Nand A; € N

How to make it
differentially private?




‘ Summary of PrivBayes

= Use a noisy version of the
Chow-Liu approach to
construct a Bayesian
network N

= Obtain the low-dimensional
tables corresponding to N

m Add noise into those tables

= Use them to generate
synthetic data

R

A

Bayesian network N

\

T,(4,B, (), T,(B,C,E),
Ts(4,E, D)

o

T;(4,B,C), T (B, C, E),
T:(4,E, D)

e

T*




‘ Subsequent Improvement: PrivMRF

= Main idea: Use Markov random fields (MRF)
instead of a Bayesian network

o This provides more flexibility in terms of the
choices of low-dimensional tables

m Result: much more accurate synthetic data

= |t became the winning solution in the NIST
2020 Differential Privacy Temporal Map
Challenge

Cai et al. Data Synthesis via Differentially Private Markov Random Fields. PVLDB 2021



‘ Roadmap

m Differential privacy (DP)

m Synthesizing relational data with DP
o Single table synthesis: PrivBayes, PrivMRF
o Multi-table synthesis

m Conclusion




‘ Multi-Table Synthesis

= Suppose that we have a database containing
multiple tables

2 Some are private, some are public

= How can we synthesize the database?

public

public

private

private

public public




‘ Multi-Table Synthesis

m Straightforward solution:

o Synthesize each private table separately (e.g.,
using PrivMRF)

= Problem:
o It is unable to handle foreign keys

public

public

private

private

public public




‘ Multi-Table Synthesis

= Example from census data:

o A table containing information about individuals
2o Another table containing household information

S o s
35 of Dwelling

M 1
34 F 1 > 1Y
3 F 1 / 2 N
27 M 2 /
28 F 2 Household Table Ty

Individual Table T;




‘ Multi-Table Synthesis

= If we synthesize these two tables separately:

S —— " g |
35 M e 1 of Dwelling

34 F 1 1 Y

3 F 1 2 N

27 M 2
28 F 2 Household Table Ty

Individual Table T;




‘ Multi-Table Synthesis

= If we synthesize these two tables separately:
2 We have synthetic individuals, and synthetic

households
2 How to assign individuals to households?

Age |Gender |... Ownership

26 F 9 of Dwelling

4 M ? 1 N

39 F ? 2 Y

38 M 2
27 M ? Household Table Ty

Individual Table T;




‘ Multi-Table Synthesis

= What if we

o Augment the household table with aggregate
information of household members

Age | Gender | ... |H-ID_ Ownership
26 : of Dwelling

F ?
4 M |7 1 N
39 F . ? 2 Y
38 M 2
27 M ? Household Table Ty

Individual Table T;




‘ Multi-Table Synthesis

= What if we

o Augment the household table with aggregate
information of household members

0 Synthesize the aggregate information, and use it to
match individuals to households

Age | Gender ... _
26

F N
4 M ?
39 F 2 2 R I I
38 M ? I
27 M ? Household Table Ty

Individual Table T;




‘ Multi-Table Synthesis

= Problem:
0 Too many augmented attributes needed
o Matching individuals to household is non-trivial

N

Age | Gender ... _
26

4
39
38
27

2 R N

Household Table Ty

= <"1 T
=) =) =) =)

Individual Table T;




‘ Multi-Table Synthesis

m Our idea:

o Assume that there is some latent variable that decides
the type of each household

o Sample households and their members based on the

latent variables
Ownership Latent
of Dwelling Variable
1 N

Age | Gender ... _
26

F N
4 M . | 0 | |
39 F ? 2 LI N
38 M ? I
27 M ? Household Table Ty

Individual Table T;




‘ Generative Process

m Sample the latent variable y

m Given y, sample the size s of the household
and its attributes

m Given y and s, sample the attributes of s
individuals

————————————

& ! Latent variable v ~[ Household size s

“““ e

'i ;%} Household attributes Individuals I




‘ Model

s Likelihood of a household H with size s:

p(H) = ) (zo(y) psIn[ ] pa y))

yeY

= Problem:

o Given the observed households, estimate the

distributions of y, s given y, and individuals given y

& ! Latent variable Y

""" =

=

————————————

Household attributes

-

Household size s

Individuals I




‘ Model

= Likelihood of a household H with size s:

p(H) = ) (p(y) 1] ] eay y))

yeY

= Problem:

o Given the observed households, estimate the
distributions of y, s given y, and individuals given y

= Solution:
o Use a graphical model with latent variables

o Parameter estimation: use expectation maximization
(EM)

= With noise added to achieve differential privacy




‘ Algorithm

= Given the two tables, we use EM + DP to obtain a
model of individual + household type

Age |.._
3B . HAD ...

34 1
3 2

Individual Table T; Household Table T,




‘ Algorithm

= Given the two tables, we use EM + DP to obtain a
model of individual + household type

= And we use PrivMRF to obtain a model of
household + household type

—_——
- -

o N x
Model 1: ) Model 2:
Individual + Type , Houseffld + Type
34 .
Individual Table T, Household Table T, |




‘ Algorithm

m This algorithm works for the case of two
tables, and can be extended to more general
cases

— —
- -

,'/ Model 2:
Household + Type

Model 1:
Individual + Type

Individual Table T, \Household Table T |




‘ Extension: Foreignh Key Chain

m For each foreign key, we consider latent
variables in the table that it refers to

m We iteratively apply the two-table algorithm
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‘ Extension: Reverse Star Schema

m For each foreign key, apply the two-table
algorithm

Education Records T, Individuals T; Medical Records T,
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m For each foreign key, apply the two-table
algorithm
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‘ Extension: Reverse Star Schema

m For each foreign key, apply the two-table
algorithm

Education Records T, Individuals T; Medical Records T,




‘ Extension: General Case

= |n general, we can handle the case when
0 Each private table has at most one foreign key
o Thereis no cycle in the key references

\




‘ Extension: General Case

m Algorithm

o Apply the two-table algorithm on each foreign key
in a bottom up manner

o Apply PrivMRF on the root(s)




‘ Experiments: Datasets

= Datasets: from the Integrated Public Use
Microdata Series (www.ipums.org)

# of Tuples | # of Attributes

Person 561,046 ~ 4.1 x 1011
Household 251,364 9 ~ 1.8 x 10°




‘ Experiments: Queries

m We consider count queries concerning both
households and individuals

2 "How many households have annual income > x
and at least one member with age > 30?"

m Query predicates are randomly generated:
0 1 range predicate on a household attribute
0 k range predicates on individual attributes

m Error metric:

absolute error of the query

d :
max{query result, 0.5% of total population}




Queries with 1 predicate on individuals

50.00%
40.00% —
30.00% —
20.00% >~ —
10.00% —
0.00%
1 2 4 8
privacy budget
—e—| atent —e—PrivMRF
Queries with 2 predicates on individuals Queries with 3 predicates on individuals
50.00% 40.00%
40.00? ‘\.\_\. 30.00% \
30.00
20.00% 20.00%
. (o] P — [ —
10.00% = ——— 10.00% e —
0.00% 0.00%
1 2 4 8 1 2 4 8
privacy budget ¢ privacy budget €

—o—| atent —e—=PrivMRF —o—| atent —e—=PrivMRF




‘ Summary

m Synthetic relational data is a promising
approach for statistical databases

2 Unlimited queries
2 No change to DBMS needed

m But handling foreign keys is a challenge

2 We have barely scratched the surface




‘ Future Work

m Private tables with multiple foreign keys
= Main issue: Difficult to model the data

C-D ... Age |.. H-ID | ...
1 35 .. 1
2 \ 34

Company Table T, 27 ... Household Table Ty
28

Individual Table T;




‘ Future Work

= Private tables with self-relationships

= Main issue: how to capture the topology of the
induced graph?

35
34
3

27
28

Individual Table T; Friends Table Ty




‘ Future Work

= Arbitrary foreign keys

/




‘ Future Work

= Beyond relational data
o Time series
o Trajectories
0 Transactions

a ...
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