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Data preparation dominates Data Science and AI time

Figure 1: How data scientists spend their time (Image courtesy Anaconda ”2020 State
of Data Science: Moving From Hype Toward Maturity.“)
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Data-oriented businesses need privacy enforcement

Privacy is critical in data-intensive environments, e.g. in healthcare where data
is collected from disparate sources and inherently heterogeneous, sensitive and
vulnerable.

Figure 2: Data privacy in healthcare requires an understanding of HIPAA (Image
courtesy noworldborders.com ”Data privacy for healthcare.“)
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Trustworthy Data Science and AI with Quality
Guarantees

I Data acquisition and preparation in data science and AI processes entail:
• integrating data from disparate privacy-aware sources

• alleviating the cost of repairing and consistency checking

• dealing with sensitive data that cannot be repaired

• dealing with temporal data (e.g. time series) for analysis purposes

I In our research, we address the following key problems:
• Annotate tabular data with inconsistency degrees to obtain quality-aware

results of data science processes

• Analyze the features of time series in order to effectively characterize and
cluster them

• Study the impact of privacy in integrating data from multiple sources
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Applications

I Quality-driven Healthcare Analytics

I Data Integration for Healthcare Databases

I Machine Learning on top of Patient’s Signals

I Ongoing EU H2020 project QUALITOP and French ANR Project
QualiHealth
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Outline of the Talk

Annotate tabular data with inconsistency degrees to obtain
quality-aware data science pipelines and querying.

I Analyze the features of raw time series in order to effectively
characterize and cluster the time series.

I Study the impact of privacy in integrating tabular data from
multiple sources.
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Annotating and Querying Data with Inconsistency
Degrees: Motivation

I Databases are oftentimes inconsistent w.r.t. unenforced constraints when:
• integrating data from disparate sources

• checking the consistency of constraints is expensive

• automatic repairing is not feasible

I Our solution leads to:
• Leave the database instances intact

• Quantify degrees of inconsistency of base tuples at different levels of
granularity

• Study how inconsistency propagates to query answers

⇒ Enable users to quantify the level of trust of data and query results
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Annotating and Querying Data with Inconsistency
Degrees: Applications

Applications
I Inconsistency-aware queries for analytical tasks
I External annotations for data cleaning pipelines
I Cost-based reparation of inconsistent data
I Combined ranking of results with quality measures
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Roadmap of our approach
I Inputs: a database , a set of denials constraints DC and a conjunctive

query Q

I Main steps:
• Identify inconsistent tuples leveraging lineage provenance

I Map each constraint in DC into a boolean conjunctive query

I Use why-provenance 1 to identify tuples responsible for constraint violations

• Annotate each tuple by a monomial representing the constraints it violates

• Use polynomial provenance to propagate annotations over answers during
query evaluation

• Quantify inconsistency degrees of tuples with two types of measures:
I CBS: Counting violated constraints

I CBM: Counting number of times the constraints are violated

• Perform top-k algorithm to rank the best k answers (according to CBS,
CBM)

1P. Buneman et al.: Why and Where: A Characterization of Data Provenance. ICDT 2001:
316-330
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Motivating Example

Database instance ()

Diagnosis(D)
PID RefD Date
02 d4 2 t1
01 d2 4 t2

Surgery(S)
PID RefD Date
01 d2 1 t3
01 d2 3 t4
02 d4 4 t5
01 d2 5 t6

Vaccination(V)
PID RefD Date
01 d2 3 t7
02 d4 3 t8

Set of denial constraints(DCs)
C1 -: D(x, y, z) ∧ S(x, y, u) ∧ z > u
C2 -: D(x, y, z) ∧ V (x, y, u) ∧ z > u
C3 -: S(x, y, z) ∧ V (x, v, z)
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Computing inconsistent tuples

Database instance ()

Diagnosis(D)
PID RefD Date
02 d4 2 t1
01 d2 4 t2

Surgery(S)
PID RefD Date
01 d2 1 t3
01 d2 3 t4
02 d4 4 t5
01 d2 5 t6

Vaccination(V)
PID RefD Date
01 d2 3 t7
02 d4 3 t8

Set of denial constraints(DCs)
C1 -: D(x, y, z) ∧ S(x, y, u) ∧ z > u
C2 -: D(x, y, z) ∧ V (x, y, u) ∧ z > u
C3 -: S(x, y, z) ∧ V (x, v, z)

Constraints into conjunctive queries

QC1 () -: D(x, y, z) ∧ S(x, y, u) ∧ z > u
QC2 () -: D(x, y, z) ∧ V (x, y, u) ∧ z > u
QC3 () -: S(x, y, z) ∧ V (x, v, z)

lineage provenance

I C1 : {t2, t3} and {t2, t4} ⇒ {t2, t3, t4}
I C2 : {t2, t7}
I C3 : {t4, t7}
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Annotation of base tuples
Database instance ()

Diagnosis(D)
PID RefD Date
02 d4 2 t1
01 d2 4 t2

Surgery(S)
PID RefD Date
01 d2 1 t3
01 d2 3 t4
02 d4 4 t5
01 d2 5 t6

Vaccination(V)
PID RefD Date
01 d2 3 t7
02 d4 3 t8

Constraints into conjunctive queries

QC1 () -: D(x, y, z) ∧ S(x, y, u) ∧ z > u
QC2 () -: D(x, y, z) ∧ V (x, y, u) ∧ z > u
QC3 () -: S(x, y, z) ∧ V (x, v, z)

lineage provenance

I C1 : {t2, t3} and {t2, t4} ⇒ {t2, t3, t4}
I C2 : {t2, t7}
I C3 : {t4, t7}

Annotated database (Υ)

Diagnosis(D)
PID RefD Date Prov
02 d4 2 1 t1
01 d2 4 C1C2 t2

Surgery(S)
PID RefD Date Prov
01 d2 1 C1 t3
01 d2 3 C1C3 t4
02 d4 4 1 t5
01 d2 5 1 t6

Vaccination(V)
PID RefD Date Prov
01 d2 3 C2C3 t7
02 d4 3 1 t8
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Inconsistency-aware measures
Annotated database (Υ)

Diagnosis(D)
PID RefD Date Prov
02 d4 2 1 t1
01 d2 4 C1C2 t2

Surgery(S)
PID RefD Date Prov
01 d2 1 C1 t3
01 d2 3 C1C3 t4
02 d4 4 1 t5
01 d2 5 1 t6

Vaccination(V)
PID RefD Date Prov
01 d2 3 C2C3 t7
02 d4 3 1 t8

Query (Q)
Q(y, u) -: D(x, y, z) ∧ S(x, y, z1) ∧ V (x, u, v)

Q(Υ)

Answers prov CBM CBS

〈d2, d2〉 C1C2 × C1 × C2C3 = C2
1C

2
2C3 5 3 a1

〈d2, d2〉 C1C2 × C1C3 × C2C3 = C2
1C

2
2C

2
3 6 3 a2

〈d2, d2〉 C1C2 × 1× C2C3 = C1C2
2C3 4 3 a3

〈d4, d4〉 1 0 0 a4
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Computing top-k answers

Qk,α: computes the best k answers of Q according to α ∈ {CBS,CBM}
I Baseline algorithm: compute all answers, sort w.r.t. to CBM or CBS and

keep the k first answers (not efficient)

I Design new efficient top-k algorithm (for CBM and CBS): TopINC

• Challenge: CBS is non-monotonic

Q(Υ)

Answers prov CBM CBS

〈d2, d2〉 C1C2 × C1 × C2C3 = C2
1C

2
2C3 5 3 a1

〈d2, d2〉 C1C2 × C1C3 × C2C3 = C2
1C

2
2C

2
3 6 3 a2

〈d2, d2〉 C1C2 × 1× C2C3 = C1C2
2C3 4 3 a3

〈d4, d4〉 1 0 0 a4
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Highlights of TopINC

I TopINC exploits a semantic index to enumerate the answers in the
appropriate order (i.e., best answers first)

I TopINC uses linear space and time bounded by the computation of Q (data
complexity)

I Main computational challenge: decide whether t ∈ Ans(Qk,α) without
computing the entire set Ans(Q)

I A new notion of optimality
• Semi-blind Algorithms (i.e., class of algorithms that use only information

provided by the annotations)

• Cost model to control the number of input tuples read on disk

I TopINC is optimal
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Experimental Assessment
I Two main goals: performance evaluation + qualitative evaluation

I Datasets and queries
• Quantitative evaluation

I Hospital with 114919 tuples and 42 DCs

I Tax with 99.999 tuples and 50 DCs

I Pstock with 244992 tuples and 10 DCs

I A synthetic dataset with 1.012.524 tuples and 15 DCs

� 14 queries ranging from binary joins to join across five tables.

• Qualitative evaluation
I Adult with 48.842 tuples and 3 DCs

I Food Inspection with 204.896 tuples and 3 DCs

� with 2 queries

I Implementation
• External module in JDK ...on top of PostgreSQL
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Performance Assessment

I Annotation of database with constraints
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I Overhead due to computing inconsistency degrees
• Maximum overhead is 273 µs per answered tuple

• Minumum overhead is 5 µs per answered tuple
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TopINC vs. Baseline

I Running time: TopINC is faster than Baseline up to 256x

I Footprint memory: TopINC used memory is always less than Baseline
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Qualitative study

I Using Adult and Inspection datasets with meaningful constraints

I Showing that CBM and CBS are complementary measures CBM
distinguishes more tuples by their inconsistency degrees than CBS

I Showing also the difference between our approach and Consistent Query
Answering (CQA)
• Consistent answers w.r.t. CBS and CBM are also consistent w.r.t. CQA

• Consistent answers w.r.t. CQA may be inconsistent w.r.t. CBS and/or CBM
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Results of our qualitative study

Figure 4: Different views of the data/query answers used in our qualitative analysis.)
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Outlook and Future Work

I Introduced a novel framework 2 for inconsistency-aware query answers
relying on two measures (CBM and CBS)

I Leveraged why-provenance and lineage provenance

I Designed a novel top-k algorithm TopINC(for CBM and CBS)

I Performed an in-depth empirical evaluation gauging the performance of
TopINCand the feasibility of the annotations

I Future work
• Dealing with other classes of constraints (e.g., Universal Constraints) and

queries (e.g., aggregate queries)

• Handling updates on data and constraints

2O. Issa, A. Bonifati, F. Toumani: Evaluating Top-k Queries with Inconsistency Degrees.
Proc. VLDB Endow. 13(11): 2146-2158 (2020)
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Outline of the Talk

I Annotate tabular data with inconsistency degrees to obtain
quality-aware data science pipelines and querying.

Analyze the features of raw time series in order to effectively
characterize and cluster the time series.

I Study the impact of privacy in integrating tabular data from
multiple sources.
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FeatTS at work on clinical signals

The problem raised by clinicians
GFR time series indicate the blood rate in the kidney glomeruli. High rates of
GFR might lead to critical conditions, such as kidney failure whereas medium or
low rates correspond to milder conditions for the patients.
Whereas clinicians can manually label a few GFR time series, they would like
that their labels propagate to the rest of the dataset in order to distinguish
high-risk patients from the low-risk ones.
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Feature-based semi-supervised clustering

[TS1,...,TSm]
1) Extraction and

Selection
of n Features

2) PFA Feature
Selection

3) Creation of Graphs
and Application of

Community Detection

4) Create the
Co Occurrence Matrix

5) Compute Clustering
on Matrix

Quality Evaluation
and Comparison

Figure 5: The algorithmic pipeline of FeatTS.

FeatTS
We introduce FeatTS, a Semi-Supervised Clustering method that leverages
features extracted from the raw time series to create clusters that reflect, as
much as possible, the original time series. To the best of our knowledge, FeatTS
is the first feature-based semi-supervised clustering framework with these key
properties.
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Novelty of FeatTS

Clustering by Seeding
The FeatTS algorithm leverages the concepts of Clustering by Seeding. This
method uses a small amount of labels of the original dataset in order to create
two kinds of links, i.e. Must Link and Cannot Link.
I Must Links are connections between two data points that represent a

“constraint of belonging”. This means that the data points (or time series at
large) should be clustered together.

I Cannot Links are connections that represent a “non-belonging constraint”
thus leading to separate data points.

Seeded kMeans3 is the most representative method in this category.

3S. Basu et al. Semi-supervised clustering by seeding. ICML 2012
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How FeatTS can help clinicians step by step

Feature extraction and selection
The first step of the algorithm is the extraction of all the possible features
derived from the time series. This operation allows to extract several hundreds
of features from an input dataset. Therefore, it becomes pivotal to discriminate
the most significant ones.

Time Series mean trend_stderr variance peaks quantile trend_rvalue Length Label
TS1 51.3 3.51 788.56 8 57 -0.94 89 No Kidney Failure
TS2 40.6 4 128.9 5 43 -0.55 206

hhhhhhhhNo Kidney Failure
TS3 74.3 17 296.8 10 106 0.01 159 Kidney Failure
TS4 95.8 9.4 783.3 10 85 0.43 139

hhhhhhKidney Failure

Figure 6: Step 1. Feature Extraction
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How FeatTS can help clinicians step by step

Feature selection and extraction
The feature selection process leverages the supervised procedure of
Benjamini-Yekutieli that lets obtain the p-value of each feature and thus its
discriminating value. We apply a technique called Principal Feature Analysis
(PFA). PFA preserves the original values of the features and thus the distance
between them. We can leverage the concept of explained variance, representing
the ratio between the variance of one single feature and the sum of variances of
all individual features.

quantile
trend_stderr
trend_rvalue

Figure 7: Step 2. PFA Feature Selection
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How FeatTS can help clinicians step by step
Graph encoding
For each feature chosen by PFA, FeatTS creates a different edge-weighted graph
network where the nodes represent the time series of the initial dataset and the
edge-weighted are computed by subtracting, in absolute value, the value of the
feature of two connected time series.

TS1

TS2 TS3

TS4
V1

V2 V3

V4

14

63

21

28

49

42

Figure 8: Step 3. Edge-weighted graph with distances as weights.

28 / 52



How FeatTS can help clinicians step by step

Community Detection
FeatTS orders all the distances computed in an ordered list and then requires to
the user to choose the percentage of distances that he wants to keep starting
from the lowest distances from the previously computed list.

V1

V2 V3

V4

14

28

21

feat1

V1

V2 V3

V4

30 70 80

feat20

. . .

Figure 9: Step 3. Application of Community Detection algorithm for each feature.
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How FeatTS can help clinicians step by step

Creation of the Co-Occurrence Matrix
FeatTS creates a matrix in which the rows and columns contain all the time
series of the dataset. Each cell xij in the matrix corresponds to the similarity
between time series Ti (in row i of the matrix) and Tj (in column j of the
matrix).

Dataset TS1 TS2 TS3 TS4

TS1 1 0.66 + 0.5
0.66 + 1 + 0.5

0.5
0.66 + 1 + 0.5

0.5
0.66 + 1 + 0.5

TS2
0.66 + 0.5

0.66 + 1 + 0.5
1 0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5

TS3
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
1 0.66 + 1 + 0.5

0.66 + 1 + 0.5

TS4
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
0.66 + 1 + 0.5
0.66 + 1 + 0.5

1

Figure 10: Step 4. Creation of Co-Occurrence Matrix.
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How FeatTS can help clinicians step by step

Clustering the Co-Occurrence Matric and Results
We need one more intermediate step, i.e. to compute the distances between the
rows of the Co-Occurrence Matrix. We employ a standard Euclidean distance to
perform the row comparison. Finally, we apply the standard K-Medoid
algorithm on the distances computed above. K-Medoid allows us to extract
clusters of time series that have the smallest distance among them.

Dataset TS1 TS2 TS3 TS4

TS1 1 0.53 0.23 0.23
TS2 0.53 1 0.23 0.23

TS3 0.23 0.23 1 1
TS4 0.23 0.23 1 1

Figure 11: Step 5. Clustering the Co-Occurrence Matrix.
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Evaluating FeatTS on UCR datasets

Quality of clustering for 64 UCR Datasets
We used a large subset of UCR Datasets (whose excerpt is reported in the table
below). The results are expressed in Adjusted Mutual Information(AMI), which
allows to obtain a reliable metric for both balanced and unbalanced clusters.

Dataset FeatTS kShape SeededKMeans
Adiac 0,31 0,39 0,52

MoteStrain 0,48 0,01 0,02
TwoLeadECG 0,88 0,10 0,07

ECG200 0,34 0,11 0,06
Computers 0,09 0,06 0,01

Coffee 1 0,35 0,88
GunPoint 0,52 0 0
Arrowhead 0,29 0,26 0,27

ItalyPowerDemand 0,54 0,39 0
Meat 0,4 0,64 0,75

OliveOil 0,27 0,52 0,53
Trace 0,74 0,52 0,69
Wine 0,12 0 0,01
Worms 0,16 0,06 0,12

ShapesAll 0,08 0,62 0,45
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Evaluating FeatTS on real-life healthcare datasets

Quality of clustering for 2 GFR Datasets
We use real-life GFR time series courtesy of the Personalized Medicine
Department at the European Hospital George Pompidou in Paris. We ran
experiments on two variants of this dataset. The first variant named contains
222 patients (one time series per patient) and spans 1 to 3 years with a variable
length between 90 and 230 data points in the time series. The second variant
called is composed of 278 patients spanning 5 years with time series having
roughly 100 data points.
The results are expressed in Adjusted Mutual Information(AMI)

Dataset FeatTS SeededKMeans
Kidney3Yr 0.56 0.44
Kidney5Yr 0.58 0.48

Table 1: Obtained AMI on Kidney 3Yr and 5Yr Datasets (k-Shape not applicable)
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Scalability of FeatTS

Scalability of the clustering pipeline
We have also assessed the scalability of our method by increasing both the
number and length of time series in a dataset. In this experiment, we have used
synthetically generated time series by using diverse characteristics such as
spectral entropy, trend, seasonality, stability, etc.

(a) Time vs.
dataset size

(b) Time vs.
dataset length

(c) % Time of
each component
vs. dataset size.

(d) % Time of each
component vs dataset
length.

Figure 12: Scalability Results.
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Outlook and Future Work

Conclusion
I Our work on clustering time series 4 shows that there is no one-size-fits-all

solution regarding the set of features to adopt.
I Our solution shows that the set of features depends on the dataset at hand

and cannot be fixed for all datasets.
I Our flexible graph encoding allows us to process the most significant

features in parallel and the other steps of our method allow us to
holistically combine the results.

Future work
I This work can be improved by rendering the entire pipeline unsupervised

instead of the current semi-supervised approach.
I Another improvement would be to dynamically choose the threshold for

graph creation based on the processed features.
I Finally, the weights of the community detection algorithm could be

combined with relevance degrees of the features.

4D. Tiano, A.Bonifati, R. Ng: Feature-driven Time Series Clustering. EDBT 2021: 349-354
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Outline of the Talk

I Annotate tabular data with inconsistency degrees to obtain
quality-aware data science pipelines and querying.

I Analyze the features of raw time series in order to effectively
characterize and cluster the time series.

Study the impact of privacy in integrating tabular data from
multiple sources.
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Context: Declarative Mappings

Schema mappings in Σ are first-order formulas (s-t tgds) that specify the
semantic relationship between schemas S and T:
∀x∀y S(x, y) ∧ U(x, z) → ∃v T (v, y) ∧ T ′(v, z)
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Setting of our approach

Source instance I
over

schema S

Policy views
schema V

(Possibly) unsafe
instance J

over
schema T

Safe instance J ′

over
schema T

Policy views
MV = (S, V,V)

Mapping
M = (S, T,Σ)

M′ = (S, T,Σ′)
(repair ofM)

MV ,M andM′ are global-as-view (GAV) mappings, i.e., their tgds take the
form ∀x φ(x)→ T (x)

Problem
How can we ensure that a mapping did not expose more information than
allowed by a set of policy views?
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Privacy preservation

Non disclosure of a query by a mappingM
M = (S, T,Σ) does not disclose a query p over S on any instance I over S if, for
all I , there exists I ′ over S such that:

I ≡M I ′ and p(I ′) = ∅

Privacy preservation
LetM1 = (S, T1,Σ1) andM2 = (S, T2,Σ2) be two mappings.

M2 preserves the privacy ofM1 on all instances of S if, for each constant-free
CQ p over S: ifM1 does not disclose p over S, thenM2 does not disclose p over
S.
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Visible chase

Principle
Output a universal source instance such that. 5 :
I the positions of constants exported into the target instances are represented

using the critical constant ∗
I the non-exported positions are represented using labeled nulls

Example
σ1 = Patient(δidIns , δname , δethn , δcounty) ∧Hospital(δidIns , δdisease)→ T1 (δethn , δdisease)

σ2 = Patient(δidIns , δname , δethn , δcounty) ∧Hospital(δidIns , δdisease)→ T2 (δcounty , δdisease)

visChase(M1) = {Patient(δnδidIns , δnδname , ∗, ∗); Hospital(δnδidIns , ∗)}

5Visible chase adapted from M.Benedikt et al.: Source Information Disclosure in
Ontology-Based Data Integration. AAAI 2017: 1056-1062
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Checking privacy preservation with the visible chase

Privacy preservation checking
LetM1 = (S, T1,Σ1) andM2 = (S, T2,Σ2) be two mappings.

M2 preserves the privacy ofM1 on all instances of S, iff there exists a
homomorphism:

h : visChase(M2)→ visChase(M1) such that h(∗) = ∗

Example
visChase(M1) = {Patient(δnδidIns , δnδname , ∗, ∗); Hospital(δnδidIns , ∗)}
visChase(M2) = {Patient(δnδidIns , δnδname , ∗, δnδcounty); Hospital(δnδidIns , ∗)}
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Steps of our mapping reparation framework

Reparation

Input:
GAV mapping

Input:
policy views

F-repair S-repair Output:
repaired mappingM

V

MpSafe Mfinal
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F-repair step

Principle
I Ensures that each tgd in the mapping to rewrite is safe w.r.t. the policy

views, without considering the possible interactions between tgds.

Example
Initial mapping and universal source instance:

I σ1 : R(x, y, z) ∧ S (y, z)→ T1(x, z) {R(∗, δn1 , ∗); S (δn1 , ∗)}

Reference universal source instance:
I visChase(MV) = {R(∗, δn1 , ∗); S (δn1 , δn2); S (δn3 , ∗)}

Two possible repairs:
I σ′

1 : R(x, y, z) ∧ S (y, z′)→ T1(x, z) {R(∗, δn1 , ∗); S (δn1 , δn2)}
I σ′′

1 : R(x, y, z) ∧ S (y′, z)→ T1(x, z) {R(∗, δn1 , ∗); S (δn3 , ∗)}
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S-repair step

Principle
I Proceeds on the output of F-repair and rewrite it in a safe mapping in

which the interactions between tgds are taken into account.
I Ensure that no unsafe unification of labelled null with * occurs.
I Two approaches used to prevent unsafe unification:

• Hiding variables.
• Breaking joins between variable occurrences.
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S-repair step: hiding of variables.

Example
Initial mapping and universal source instance:

I σ1 : R(δx , δy)→ T1 (δx)
I σ2 : R(δx , δy)→ T2 (δy)
I visChase(M) = {R(∗, ∗)}

Reference universal source instance:
I visChase(MV) = {R(∗, δn1);R(δn2 , ∗)}

Two possible repairs:
I σ′

1 : R(δx′, δy)→ ∃δx,T1 (δx)
I σ′

2 : R(δx , δy′)→ ∃δy,T2 (δy)
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S-repair step: breaking joins between variables.

Example
Initial mapping and universal source instance:

I σ1 : R(x, x, y) ∧ S (y)→ T1(y)
I σ2 : R(x, x, y)→ T2(x)
I visChase(M) = {R(∗, ∗, ∗); S (∗)}

Reference universal source instance:
I visChase(MV) = {R(δn1 , δn1 , ∗), R(∗, ∗, δn2),S (∗)}

Repairing of σ1 (σ2 is kept unchanged):
I σ′

1 : R(x, x′, y) ∧ S (y)→ T1(y)
I σ2 : R(x, x, y)→ T2(x)
I visChase(M) = {R(δn1 , δn2 , ∗);R(∗, ∗, δn3); S (∗)}
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Experimental setting

I Study the execution time of our reparation framework.

I Presented scenarios are synthetic ones generated with iBench 6.

I A scenario contains from 100 to 300 tgds.

I The left-hand side conjunction of a tgd contains from 1 to 5 atoms.

I From 5 to 8 exported variables per tgd.

6P. C. Arocena et al.: The iBench Integration Metadata Generator. Proc. VLDB Endow.
9(3): 108-119 (2015)
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Running time of the repairing framework

The rewriting time is kept relatively low on average, compared to the safety
checking process (homomorphism test) and to the execution of the visible
chase.
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Existing Safety Paradigms

Controlled Query Evaluation
I Introduced in [Sicherman et al.] 7.

• The confidentiality is enforced by a censor.
• Filter and modify results of a query.

I policy views are only known by the database administrators.
I queried data has a protected access through a query interface.

Privacy in data integration
I Work of [A. Nash et al.] 8

• Did not consider multiple policy views altogether.
• Focus on complexity
• Did not provide practical algorithms to check the safety of a mapping.
• Did not address the reparation of a mapping in case of violations.

7G.L. Sicherman et al.: Answering Queries Without Revealing Secrets. ACM Trans.
Database Syst. 8(1): 41-59 (1983)

8A. Nash et al. Privacy in GLAV Information Integration. ICDT 2007
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Outlook and Future Work

Conclusion
I Our framework 9 is capable of detecting and repairing information leakage

in mappings.
I The experimental assessment shows the practicality and the quality of our

reparation approach.

Future Work
I Extension of our framework to the reparation of LAV and GLAV mappings.
I Exploration of interactive approaches in order to select the best repairs.

9A. Bonifati, U. Comignani, E. Tsamoura: Exchanging Data under Policy Views. EDBT
2021: 1-12
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Much work on Quality-driven Data Science and AI
remains to be done

Quality is a key aspect of Data Science and AI processes
I Quality is interpreted at large as violations of consistency and privacy

constraints in tabular data or as features of sequential data.
I Future work should address and combine other kinds of quality problems

(e.g. anomalies), other classes of constraints (e.g. matching constraints)
and on different data formats (e.g. graphs).

I Predictive models for identifying quality problems in dynamic data as well
as new kinds of data glitches are still open research issues to tackle in the
coming years.
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Thanks for your attention! Any questions?
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